Pub Date : 2024-06-01Epub Date: 2024-01-09DOI: 10.1007/s00497-023-00494-3
Cristian Genaro Ramírez-Castro, Alma Piñeyro-Nelson, Estela Sandoval-Zapotitla, Salvador Arias, Isaura Rosas-Reinhold
Key message: Contrasting morphologies in Disocactus are the result of differential development of the vegetative and floral tissue where intercalary growth is involved, resulting in a complex structure, the floral axis. Species from the Cactaceae bear adaptations related with their growth in environments under hydric stress. These adaptations have translated into the reduction and modification of various structures such as leaves, stems, lateral branches, roots and the structuring of flowers in a so-called flower-shoot. While cacti flowers and fruits have a consistent structure with showy hermaphrodite or unisexual flowers that produce a fruit called cactidium, the developmental dynamics of vegetative and reproductive tissues comprising the reproductive unit have only been inferred through the analysis of pre-anthetic buds. Here we present a comparative analysis of two developmental series covering the early stages of flower formation and organ differentiation in Disocactus speciosus and Disocactus eichlamii, which have contrasting floral morphologies. We observe that within the areole, a shoot apical meristem commences to grow upward, producing lateral leaves with a spiral arrangement, rapidly transitioning to a floral meristem. The floral meristem produces tepal primordia and a staminal ring meristem from which numerous or few stamens develop in a centrifugal manner in D. speciosus and D. eichlamii, respectively. Also, the inferior ovary derives from the floral meristem flattening and an upward growth of the surrounding tissue of the underlying stem, producing the pericarpel. This structure is novel to cacti and lacks a clear anatomical delimitation with the carpel wall. Here, we present a first study that documents the early processes taking place during initial meristem determination related to pericarpel development and early floral organ formation in cacti until the establishment of mature floral organs.
关键信息:仙人掌(Disocactus)中形态各异的植株和花组织的不同发育方式导致了复杂的结构--花轴。仙人掌科的物种具有在水压环境中生长的适应性。这些适应性转化为各种结构的减少和改变,如叶、茎、侧枝、根和所谓的花芽结构。仙人掌的花和果实具有一致的结构,即雌雄同体或单性的花产生一个称为仙人掌的果实,但组成生殖单元的无性和生殖组织的发育动态只能通过对前合成芽的分析来推断。在这里,我们对两个发育系列进行了比较分析,这两个系列涵盖了 Disocactus speciosus 和 Disocactus eichlamii 花形成和器官分化的早期阶段。我们观察到,在小窠内,嫩枝顶端分生组织开始向上生长,产生螺旋状排列的侧叶,并迅速过渡到花分生组织。花分生组织产生表皮原基和雄蕊环分生组织,在 D. speciosus 和 D. eichlamii 中,这些原基和分生组织分别以离心方式发育出大量或少量雄蕊。此外,下位子房来自花分生组织的扁平化和下部茎干周围组织的向上生长,从而产生果皮。这种结构对仙人掌类植物来说很新颖,与心皮壁之间缺乏明确的解剖界限。在此,我们首次研究记录了仙人掌在最初的分生组织确定过程中发生的与果皮发育和早期花器官形成有关的早期过程,直至成熟花器官的形成。
{"title":"Comparative analysis of floral transition and floral organ formation in two contrasting species: Disocactus speciosus and D. eichlamii (Cactaceae).","authors":"Cristian Genaro Ramírez-Castro, Alma Piñeyro-Nelson, Estela Sandoval-Zapotitla, Salvador Arias, Isaura Rosas-Reinhold","doi":"10.1007/s00497-023-00494-3","DOIUrl":"10.1007/s00497-023-00494-3","url":null,"abstract":"<p><strong>Key message: </strong>Contrasting morphologies in Disocactus are the result of differential development of the vegetative and floral tissue where intercalary growth is involved, resulting in a complex structure, the floral axis. Species from the Cactaceae bear adaptations related with their growth in environments under hydric stress. These adaptations have translated into the reduction and modification of various structures such as leaves, stems, lateral branches, roots and the structuring of flowers in a so-called flower-shoot. While cacti flowers and fruits have a consistent structure with showy hermaphrodite or unisexual flowers that produce a fruit called cactidium, the developmental dynamics of vegetative and reproductive tissues comprising the reproductive unit have only been inferred through the analysis of pre-anthetic buds. Here we present a comparative analysis of two developmental series covering the early stages of flower formation and organ differentiation in Disocactus speciosus and Disocactus eichlamii, which have contrasting floral morphologies. We observe that within the areole, a shoot apical meristem commences to grow upward, producing lateral leaves with a spiral arrangement, rapidly transitioning to a floral meristem. The floral meristem produces tepal primordia and a staminal ring meristem from which numerous or few stamens develop in a centrifugal manner in D. speciosus and D. eichlamii, respectively. Also, the inferior ovary derives from the floral meristem flattening and an upward growth of the surrounding tissue of the underlying stem, producing the pericarpel. This structure is novel to cacti and lacks a clear anatomical delimitation with the carpel wall. Here, we present a first study that documents the early processes taking place during initial meristem determination related to pericarpel development and early floral organ formation in cacti until the establishment of mature floral organs.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-10-12DOI: 10.1007/s00497-023-00482-7
Yesenia Madrigal, Juan F Alzate, Natalia Pabón-Mora
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
兰科是一个巨大而多样的植物科,约有29000个物种,有各种各样的生命形式,可以在短暂的栖息地定居。尽管存在这种多样性,但人们对其开花整合器对特定环境因素的反应知之甚少。在开花植物的生殖过渡过程中,营养顶端分生组织(SAM)转化为花序分生组织,形成苞片和花朵。在水稻等模式草中,已经确定了控制繁殖转变的开花遗传调控网络(FGRN),但在兰科中知之甚少。为了分析兰花中FRGN的参与者,我们对类CONSTANS/类CONSTANS 4(COL/COL4)、开花位点D(FD)、花位点C/FRITFULL(FLC/FUL)和过表达抑制因子1(SOC1)基因谱系进行了全面的系统发育分析。除了先前分析的PEBP和AGL24/SVP基因外,在这里,我们发现与其他单子叶植物(包括草)相比,属于COL4和FUL基因谱系的兰花同源物增加,这是由于兰花特异性基因谱系重复。相反,在COL、FD和SOC1基因谱系中,兰科植物的局部重复较少,这表明在重要信号因子的强烈纯化选择下,关键功能得以保留。我们还确定了这种重复后蛋白质序列的变化、由此产生的旁系分支进化率的变化以及分离同源物在不同兰花中的靶向表达。有趣的是,春化反应基因如vernalization 1(VRN1)和FLOWERING LOCUS C(FLC)在兰花中完全缺乏,或者数量减少,就像vernalization 2/GHD7(VRN2)的情况一样。我们的研究结果指出,在兰花繁殖过渡期间,感知温度变化的非典型因素。从安第斯高山的陆生兰花Elleanthus auratiacus收集的关键因子的表达数据使我们能够表征哪些拷贝在开花期间实际上是活跃的。总之,我们的数据为评估数量有限的同源物的基因功能提供了一个全面的框架,这些同源物在开花过渡过程中更可能发挥关键作用,以及与温带草本植物相比,新热带兰花的FGRN的变化。
{"title":"Evolution of major flowering pathway integrators in Orchidaceae.","authors":"Yesenia Madrigal, Juan F Alzate, Natalia Pabón-Mora","doi":"10.1007/s00497-023-00482-7","DOIUrl":"10.1007/s00497-023-00482-7","url":null,"abstract":"<p><p>The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-11-29DOI: 10.1007/s00497-023-00487-2
Andrea Tovar-Aguilar, Daniel Grimanelli, Gerardo Acosta-García, Jean-Philippe Vielle-Calzada, Jesús Agustín Badillo-Corona, Noé Durán-Figueroa
Key message: The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.
{"title":"The miRNA822 loaded by ARGONAUTE9 modulates the monosporic female gametogenesis in Arabidopsis thaliana.","authors":"Andrea Tovar-Aguilar, Daniel Grimanelli, Gerardo Acosta-García, Jean-Philippe Vielle-Calzada, Jesús Agustín Badillo-Corona, Noé Durán-Figueroa","doi":"10.1007/s00497-023-00487-2","DOIUrl":"10.1007/s00497-023-00487-2","url":null,"abstract":"<p><strong>Key message: </strong>The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-04-29DOI: 10.1007/s00497-023-00465-8
Andrea G Reutemann, Juca A B San Martin, Raúl E Pozner
Key message: The Cyperaceae fruit consistency depends on the mesocarp. Seed structure is diverse and related to the evolutionary history of their species. A new storage tissue is described for Cyperaceae. Anatomy and histochemistry of Cyperaceae fruits (including seeds) are poorly known due to their hard, isolating tissues that prevent anatomical techniques. We performed the first, most comprehensive structural diversity characterisation of fruit and seed in Cyperaceae, accompanied by an unprecedented histochemical characterisation of seeds for this family. We analysed fruits of 29 species, included in 19 genera and 12 tribes within the subfamilies Cyperoideae and Mapanioideae, using light microscopy. Cyperaceae fruits have a pericarp with a one-cell-layered exocarp and endocarp, and a multi-cell-layered mesocarp. The mesocarp of the Mapanioideae has a spongy-fleshy outer region and a hard inner region. The mesocarp of the Cyperoideae has only a hard region. The pericarp is free from the seed coat. Cyperaceae seeds have a three-layered seed coat, an embryo with haustorial function of its scutellum, and two storage tissues: the endosperm and a putative perisperm. Nine seed morphotypes and four seed subtypes were observed among the studied species. Our results suggested that the fruit consistency is determined by the mesocarp. Both the terms "nut" and "achene" should be accepted to refer to the dry fruit of the Cyperaceae until a widely accepted fruit classification for angiosperms is proposed. The Cyperaceae seed structural diversity is high and related to the evolutionary history of the species. The "perisperm" is a new tissue proposed for sedge seeds, and is here characterized for the first time. The seed coat has a different structure than the one described so far for the family.
{"title":"Structural and histochemical approach to the fruit and seed diversity of Cyperaceae in an evolutionary context.","authors":"Andrea G Reutemann, Juca A B San Martin, Raúl E Pozner","doi":"10.1007/s00497-023-00465-8","DOIUrl":"10.1007/s00497-023-00465-8","url":null,"abstract":"<p><strong>Key message: </strong>The Cyperaceae fruit consistency depends on the mesocarp. Seed structure is diverse and related to the evolutionary history of their species. A new storage tissue is described for Cyperaceae. Anatomy and histochemistry of Cyperaceae fruits (including seeds) are poorly known due to their hard, isolating tissues that prevent anatomical techniques. We performed the first, most comprehensive structural diversity characterisation of fruit and seed in Cyperaceae, accompanied by an unprecedented histochemical characterisation of seeds for this family. We analysed fruits of 29 species, included in 19 genera and 12 tribes within the subfamilies Cyperoideae and Mapanioideae, using light microscopy. Cyperaceae fruits have a pericarp with a one-cell-layered exocarp and endocarp, and a multi-cell-layered mesocarp. The mesocarp of the Mapanioideae has a spongy-fleshy outer region and a hard inner region. The mesocarp of the Cyperoideae has only a hard region. The pericarp is free from the seed coat. Cyperaceae seeds have a three-layered seed coat, an embryo with haustorial function of its scutellum, and two storage tissues: the endosperm and a putative perisperm. Nine seed morphotypes and four seed subtypes were observed among the studied species. Our results suggested that the fruit consistency is determined by the mesocarp. Both the terms \"nut\" and \"achene\" should be accepted to refer to the dry fruit of the Cyperaceae until a widely accepted fruit classification for angiosperms is proposed. The Cyperaceae seed structural diversity is high and related to the evolutionary history of the species. The \"perisperm\" is a new tissue proposed for sedge seeds, and is here characterized for the first time. The seed coat has a different structure than the one described so far for the family.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9365049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-01-06DOI: 10.1007/s00497-023-00491-6
Sarah Muniz Nardeli, Luis Willian Pacheco Arge, Sinara Artico, Stéfanie Menezes de Moura, Diogo Antonio Tschoeke, Fernanda Alves de Freitas Guedes, Maria Fatima Grossi-de-Sa, Adriana Pinheiro Martinelli, Marcio Alves-Ferreira
Key message: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.
关键信息:最后,bZIP 基因家族包括一些据报道在花发育中发挥作用的基因,如 bZIP14(FD)。值得注意的是,bZIP14 对于拟南芥花序发育的花序位点 T(FT)启动至关重要(Abe 等,2005 年)。棉花(Gossypium hirsutum L.)是世界上最广泛种植的纤维作物。然而,其生殖发育在分子水平上的特征还很不明显。因此,本研究对 G. hirsutum 的三个不同生殖阶段进行了详细的转录组分析。我们提供的证据表明,超过 64,000 个基因在 G. hirsutum 的花发育过程中处于活跃状态,其中 94.33% 的基因被归入功能项和特定通路。基因组富集分析(Gene set enrichment analysis,GSEA)显示,花器官发育、花粉外皮形成和雄蕊发育等生物过程类别的基因在 G. hirsutum 的花发育过程中得到了富集。此外,我们还发现了拟南芥基因调控网络(G.hirsutum花粉和花发育的基因调控网络(GRN)中的拟南芥同源物,包括 WUSCHEL(WUS)、INNER NO OUTER(INO)、AGAMOUS-LIKE 66(AGL66)等转录因子、这些转录因子包括 WUSCHEL(WUS)、INNER NO OUTER(INO)、AGAMOUS-LIKE 66(AGL66)、SPOROCYTELESS/NOZZLE(SPL/NZZ)、DYSFUNCTIONAL TAPETUM 1(DYT1)、ABORTED MICROSPORES(AMS)和 ASH1-RELATED 3(ASHR3)等转录因子,它们都是已知的植物繁殖成功的关键基因。棉花 MADS-box 蛋白-蛋白相互作用模式与之前描述的拟南芥 AGAMOUS(AG)、SEEDSTICK(STK)、SHATTERPROOF(SHP)和 SEPALLATA3(SEP3)同源蛋白的模式相似。除了作为花发育比较研究的资源外,这项工作还强调了基因表达谱的变化和各阶段的分子网络,这对棉花育种改良很有价值。
{"title":"Global gene expression profile and functional analysis reveal the conservation of reproduction-associated gene networks in Gossypium hirsutum.","authors":"Sarah Muniz Nardeli, Luis Willian Pacheco Arge, Sinara Artico, Stéfanie Menezes de Moura, Diogo Antonio Tschoeke, Fernanda Alves de Freitas Guedes, Maria Fatima Grossi-de-Sa, Adriana Pinheiro Martinelli, Marcio Alves-Ferreira","doi":"10.1007/s00497-023-00491-6","DOIUrl":"10.1007/s00497-023-00491-6","url":null,"abstract":"<p><strong>Key message: </strong>Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-05-03DOI: 10.1007/s00497-023-00466-7
Christian D Lorenzo, Pedro García-Gagliardi, María Laura Gobbini, Santiago N Freytes, Mariana S Antonietti, Estefanía Mancini, Carlos A Dezar, Gerónimo Watson, Marcelo J Yanovsky, Pablo D Cerdán
Key message: MsTFL1A is an important gene involved in flowering repression in alfalfa (Medicago sativa) which conditions not only above-ground plant shoot architecture but also root development and growth. Delayed flowering is an important trait for forage species, as it allows harvesting of high-quality forage for a longer time before nutritional values decline due to plant architecture changes related to flowering onset. Despite the relevance of delayed flowering, this trait has not yet been thoroughly exploited in alfalfa. This is mainly due to its complex genetics, sensitivity to inbreeding and to the fact that delayed flowering would be only advantageous if it allowed increased forage quality without compromising seed production. To develop new delayed-flowering varieties, we have characterized the three TERMINAL FLOWERING 1 (TFL1) family of genes in alfalfa: MsTFL1A, MsTFL1B and MsTFL1C. Constitutive expression of MsTFL1A in Arabidopsis caused late flowering and changes in inflorescence architecture, indicating that MsTFL1A is the ortholog of Arabidopsis TFL1. Overexpression of MsTFL1A in alfalfa consistently led to delayed flowering in both controlled and natural field conditions, coupled to an increase in leaf/stem ratio, a common indicator of forage quality. Additionally, overexpression of MsTFL1A reduced root development, reinforcing the role of MsTFL1A not only as a flowering repressor but also as a regulator of root development.We conclude that the precise manipulation of MsTFL1A gene expression may represent a powerful tool to improve alfalfa forage quality.
{"title":"MsTFL1A delays flowering and regulates shoot architecture and root development in Medicago sativa.","authors":"Christian D Lorenzo, Pedro García-Gagliardi, María Laura Gobbini, Santiago N Freytes, Mariana S Antonietti, Estefanía Mancini, Carlos A Dezar, Gerónimo Watson, Marcelo J Yanovsky, Pablo D Cerdán","doi":"10.1007/s00497-023-00466-7","DOIUrl":"10.1007/s00497-023-00466-7","url":null,"abstract":"<p><strong>Key message: </strong>MsTFL1A is an important gene involved in flowering repression in alfalfa (Medicago sativa) which conditions not only above-ground plant shoot architecture but also root development and growth. Delayed flowering is an important trait for forage species, as it allows harvesting of high-quality forage for a longer time before nutritional values decline due to plant architecture changes related to flowering onset. Despite the relevance of delayed flowering, this trait has not yet been thoroughly exploited in alfalfa. This is mainly due to its complex genetics, sensitivity to inbreeding and to the fact that delayed flowering would be only advantageous if it allowed increased forage quality without compromising seed production. To develop new delayed-flowering varieties, we have characterized the three TERMINAL FLOWERING 1 (TFL1) family of genes in alfalfa: MsTFL1A, MsTFL1B and MsTFL1C. Constitutive expression of MsTFL1A in Arabidopsis caused late flowering and changes in inflorescence architecture, indicating that MsTFL1A is the ortholog of Arabidopsis TFL1. Overexpression of MsTFL1A in alfalfa consistently led to delayed flowering in both controlled and natural field conditions, coupled to an increase in leaf/stem ratio, a common indicator of forage quality. Additionally, overexpression of MsTFL1A reduced root development, reinforcing the role of MsTFL1A not only as a flowering repressor but also as a regulator of root development.We conclude that the precise manipulation of MsTFL1A gene expression may represent a powerful tool to improve alfalfa forage quality.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9393446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-12-06DOI: 10.1007/s00497-023-00490-7
J Carballo, A Achilli, F Hernández, M Bocchini, M C Pasten, G Marconi, E Albertini, D Zappacosta, V Echenique
Epigenetics studies changes in gene activity without changes in the DNA sequence. Methylation is an epigenetic mechanism important in many pathways, such as biotic and abiotic stresses, cell division, and reproduction. Eragrostis curvula is a grass species reproducing by apomixis, a clonal reproduction by seeds. This work employed the MCSeEd technique to identify deferentially methylated positions, regions, and genes in the CG, CHG, and CHH contexts in E. curvula genotypes with similar genomic backgrounds but with different reproductive modes and ploidy levels. In this way, we focused the analysis on the cvs. Tanganyika INTA (4x, apomictic), Victoria (2x, sexual), and Bahiense (4x, apomictic). Victoria was obtained from the diploidization of Tanganyika INTA, while Bahiense was produced from the tetraploidization of Victoria. This study showed that polyploid/apomictic genotypes had more differentially methylated positions and regions than the diploid sexual ones. Interestingly, it was possible to observe fewer differentially methylated positions and regions in CG than in the other contexts, meaning CG methylation is conserved across the genotypes regardless of the ploidy level and reproductive mode. In the comparisons between sexual and apomictic genotypes, we identified differentially methylated genes involved in the reproductive pathways, specifically in meiosis, cell division, and fertilization. Another interesting observation was that several differentially methylated genes between the diploid and the original tetraploid genotype recovered their methylation status after tetraploidization, suggesting that methylation is an important mechanism involved in reproduction and ploidy changes.
{"title":"Differentially methylated genes involved in reproduction and ploidy levels in recent diploidized and tetraploidized Eragrostis curvula genotypes.","authors":"J Carballo, A Achilli, F Hernández, M Bocchini, M C Pasten, G Marconi, E Albertini, D Zappacosta, V Echenique","doi":"10.1007/s00497-023-00490-7","DOIUrl":"10.1007/s00497-023-00490-7","url":null,"abstract":"<p><p>Epigenetics studies changes in gene activity without changes in the DNA sequence. Methylation is an epigenetic mechanism important in many pathways, such as biotic and abiotic stresses, cell division, and reproduction. Eragrostis curvula is a grass species reproducing by apomixis, a clonal reproduction by seeds. This work employed the MCSeEd technique to identify deferentially methylated positions, regions, and genes in the CG, CHG, and CHH contexts in E. curvula genotypes with similar genomic backgrounds but with different reproductive modes and ploidy levels. In this way, we focused the analysis on the cvs. Tanganyika INTA (4x, apomictic), Victoria (2x, sexual), and Bahiense (4x, apomictic). Victoria was obtained from the diploidization of Tanganyika INTA, while Bahiense was produced from the tetraploidization of Victoria. This study showed that polyploid/apomictic genotypes had more differentially methylated positions and regions than the diploid sexual ones. Interestingly, it was possible to observe fewer differentially methylated positions and regions in CG than in the other contexts, meaning CG methylation is conserved across the genotypes regardless of the ploidy level and reproductive mode. In the comparisons between sexual and apomictic genotypes, we identified differentially methylated genes involved in the reproductive pathways, specifically in meiosis, cell division, and fertilization. Another interesting observation was that several differentially methylated genes between the diploid and the original tetraploid genotype recovered their methylation status after tetraploidization, suggesting that methylation is an important mechanism involved in reproduction and ploidy changes.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review provides a thorough and comprehensive perspective on the topic of cucumber sexual expression. Specifically, insights into sex expression mediated by pathways other than ethylene are highlighted.
Abstract
Cucumber (Cucumis sativus L.) is a common and important commercial crop that is cultivated and consumed worldwide. Additionally, this species is commonly used as a model for investigating plant sex expression. Cucumbers exhibit a variety of floral arrangements, comprising male, female, and hermaphroditic (bisexual) flowers. Generally, cucumber plants that produce female flowers are typically preferred due to their significant impact on the overall output. Various environmental conditions, such as temperature, light quality, and photoperiod, have been also shown to influence the sex expression in this species. Multiple lines of evidence indicate that ethylene and its biosynthesis genes are crucial in regulating cucumber sex expression. Gibberellins, another well-known phytohormone, can similarly influence cucumber sex expression via an ethylene-independent route. Further studies employing the next-generation sequencing technology also visualized a deeper slice of the molecular mechanism such as the role of the cell cycle program in the cucumber sex expression. This review aims to provide an overview of the sex expression of cucumber including its underlying molecular mechanism and regulatory aspects based on recent investigations.