Key message: Induction of parthenogenesis (embryo formation from unfertilized egg cells) by embryogenic transcription factors is associated with twin formation at high frequencies, and involves two distinct mechanisms. Synthetic apomixis has been achieved through the induction of parthenogenesis by ectopic expression of the Baby Boom family of transcription factors. An associated phenomenon from this process is the formation of polyembryony including twin progeny at high frequencies, but the underlying mechanisms have not been explored. Here, we provide a brief description of the phenomenon, discuss potential mechanisms for twin formation in flowering plants, propose two possible models for their occurrence, and evaluate the available evidence from both dizygotic and monozygotic twins in relation to these models. The two proposed models are independent, but they can operate in combination. We conclude that both models are required to explain the types of twins and triplets that we and others have observed. These models provide future directions for basic research, as well as suggest possible approaches towards reducing polyembryony when incorporating synthetic apomixis into crop plants such as maize where twinning is not desirable.
{"title":"Twin embryo formation by induced parthenogenesis.","authors":"Hannah Peha, Hui Ren, Debra Skinner, Venkatesan Sundaresan","doi":"10.1007/s00497-024-00512-y","DOIUrl":"10.1007/s00497-024-00512-y","url":null,"abstract":"<p><strong>Key message: </strong>Induction of parthenogenesis (embryo formation from unfertilized egg cells) by embryogenic transcription factors is associated with twin formation at high frequencies, and involves two distinct mechanisms. Synthetic apomixis has been achieved through the induction of parthenogenesis by ectopic expression of the Baby Boom family of transcription factors. An associated phenomenon from this process is the formation of polyembryony including twin progeny at high frequencies, but the underlying mechanisms have not been explored. Here, we provide a brief description of the phenomenon, discuss potential mechanisms for twin formation in flowering plants, propose two possible models for their occurrence, and evaluate the available evidence from both dizygotic and monozygotic twins in relation to these models. The two proposed models are independent, but they can operate in combination. We conclude that both models are required to explain the types of twins and triplets that we and others have observed. These models provide future directions for basic research, as well as suggest possible approaches towards reducing polyembryony when incorporating synthetic apomixis into crop plants such as maize where twinning is not desirable.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 1","pages":"3"},"PeriodicalIF":2.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: Hybridization barriers in Brassicaceae play a pivotal role in governing reproductive success and maintaining speciation. In this perspective, we highlight recent advances revealing the intricate molecular mechanisms and the interplay among key players governing these barriers. Recent studies have shed light on the molecular mechanisms that govern hybridization barriers in Brassicaceae. The interplay between pollen coat proteins, stigmatic receptors, and signaling peptides plays a crucial role in determining the success of pollination. At the core of this system, autocrine stigmatic RALF peptides (sRALF) maintain the stigmatic barrier by activating the FERONIA (FER) and ANJEA (ANJ) receptor complex, triggering the RAC/ROP-RBOHD pathway and subsequent reactive oxygen species (ROS) production. It is now established that incompatible pollen rejection is mediated by two parallel pathways: the FER-RAC/ROP-RBOHD pathway, which generates ROS, and the ARC1-mediated pathway, which degrades compatible factors required for pollen growth. Conversely, compatible pollen overcomes the stigmatic barrier through the action of pollen coat proteins (PCP-B) and paracrine pollen-derived RALF peptides (pRALF), which compete with autocrine sRALF for receptor binding, enabling successful pollen hydration and tube penetration. The "lock-and-key" mechanism involving sRALF and pRALF provides species-specific recognition of compatible pollen. These findings offer valuable insights into the molecular basis of hybridization barriers and open new possibilities for overcoming these barriers in interspecific and intergeneric crosses within Brassicaceae, with potential applications in plant breeding and crop improvement. Future research should focus on elucidating the evolutionary dynamics of these signaling pathways and exploring their manipulation for crop breeding purposes.
{"title":"From lock and key to molecular diplomacy: understanding pollen recognition and discrimination in brassicaceae.","authors":"Hemal Bhalla, Kumari Ankita, Kumar Abhinandan, Trivima Sharma, Subramanian Sankaranarayanan","doi":"10.1007/s00497-024-00511-z","DOIUrl":"10.1007/s00497-024-00511-z","url":null,"abstract":"<p><strong>Key message: </strong>Hybridization barriers in Brassicaceae play a pivotal role in governing reproductive success and maintaining speciation. In this perspective, we highlight recent advances revealing the intricate molecular mechanisms and the interplay among key players governing these barriers. Recent studies have shed light on the molecular mechanisms that govern hybridization barriers in Brassicaceae. The interplay between pollen coat proteins, stigmatic receptors, and signaling peptides plays a crucial role in determining the success of pollination. At the core of this system, autocrine stigmatic RALF peptides (sRALF) maintain the stigmatic barrier by activating the FERONIA (FER) and ANJEA (ANJ) receptor complex, triggering the RAC/ROP-RBOHD pathway and subsequent reactive oxygen species (ROS) production. It is now established that incompatible pollen rejection is mediated by two parallel pathways: the FER-RAC/ROP-RBOHD pathway, which generates ROS, and the ARC1-mediated pathway, which degrades compatible factors required for pollen growth. Conversely, compatible pollen overcomes the stigmatic barrier through the action of pollen coat proteins (PCP-B) and paracrine pollen-derived RALF peptides (pRALF), which compete with autocrine sRALF for receptor binding, enabling successful pollen hydration and tube penetration. The \"lock-and-key\" mechanism involving sRALF and pRALF provides species-specific recognition of compatible pollen. These findings offer valuable insights into the molecular basis of hybridization barriers and open new possibilities for overcoming these barriers in interspecific and intergeneric crosses within Brassicaceae, with potential applications in plant breeding and crop improvement. Future research should focus on elucidating the evolutionary dynamics of these signaling pathways and exploring their manipulation for crop breeding purposes.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 1","pages":"2"},"PeriodicalIF":2.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1007/s00497-024-00513-x
Yao Zhang, Hao-Ran Sun, Zhi-Cheng Hu, Yang Dong
Key message: Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants. Variations in the location of synthesis, polarized auxin transport (PAT) have been proposed to account for the development of diverse organ shapes, but the exact cellular mechanism has yet to be elucidated. The Capsella rubella develops a perfect heart-shaped fruit from an ovate shape gynoecium that is tightly linked to the localized auxin synthesis in the valve tips and provides a unique opportunity to address this question. In this study, we studied auxin movement in the fruits and the cellular effect of N-1-Naphthylphthalamic Acid (NPA) on the fruit shape determination by constructing the pCrPIN3:PIN3:GFP reporter and live-imaging. We found PAT in the valve epidermis is in congruent with fruit shape development and NPA treatment disrupts the heat-shaped fruit development mainly by repressing cell anisotropic growth with minor effect on division. As the Capsella fruit is unusually big in size, we also included a detailed step-by-step protocol on how to conduct live-imaging experiment. We further test the utility of this protocol by conducting a live-imaging analysis of the gynophore in Arachis hypogaea. Collectively, the results of this study elucidated the mechanism on how auxin signal was translated into instructions guiding cell growth during organ shape determination. In addition, the description of the detailed live-imaging protocol will encourage further studies of the cellular mechanisms underlying shape diversification in angiosperms.
{"title":"Cellular mechanism of polarized auxin transport on fruit shape determination revealed by time-lapse live imaging.","authors":"Yao Zhang, Hao-Ran Sun, Zhi-Cheng Hu, Yang Dong","doi":"10.1007/s00497-024-00513-x","DOIUrl":"10.1007/s00497-024-00513-x","url":null,"abstract":"<p><strong>Key message: </strong>Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants. Variations in the location of synthesis, polarized auxin transport (PAT) have been proposed to account for the development of diverse organ shapes, but the exact cellular mechanism has yet to be elucidated. The Capsella rubella develops a perfect heart-shaped fruit from an ovate shape gynoecium that is tightly linked to the localized auxin synthesis in the valve tips and provides a unique opportunity to address this question. In this study, we studied auxin movement in the fruits and the cellular effect of N-1-Naphthylphthalamic Acid (NPA) on the fruit shape determination by constructing the pCrPIN3:PIN3:GFP reporter and live-imaging. We found PAT in the valve epidermis is in congruent with fruit shape development and NPA treatment disrupts the heat-shaped fruit development mainly by repressing cell anisotropic growth with minor effect on division. As the Capsella fruit is unusually big in size, we also included a detailed step-by-step protocol on how to conduct live-imaging experiment. We further test the utility of this protocol by conducting a live-imaging analysis of the gynophore in Arachis hypogaea. Collectively, the results of this study elucidated the mechanism on how auxin signal was translated into instructions guiding cell growth during organ shape determination. In addition, the description of the detailed live-imaging protocol will encourage further studies of the cellular mechanisms underlying shape diversification in angiosperms.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 1","pages":"1"},"PeriodicalIF":2.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s00497-024-00508-8
Morgan Moser, Norman R. Groves, Iris Meier
Key message
The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely affecting the first post-meiotic mitosis in both cases, and is required for full seed set.
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female gametophytes. Loss of SINE3 results in a female-derived seed set defect, with sine3 mutant ovules arresting at stage FG1. Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition, sine3 mutants have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first post-meiotic nuclear division in both cases.
{"title":"The Arabidopsis KASH protein SINE3 is involved in male and female gametogenesis","authors":"Morgan Moser, Norman R. Groves, Iris Meier","doi":"10.1007/s00497-024-00508-8","DOIUrl":"https://doi.org/10.1007/s00497-024-00508-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Key message</h3><p>The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely affecting the first post-meiotic mitosis in both cases, and is required for full seed set.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female gametophytes. Loss of SINE3 results in a female-derived seed set defect, with <i>sine3</i> mutant ovules arresting at stage FG1. Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition<i>, sine3</i> mutants have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first post-meiotic nuclear division in both cases.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.
关键信息在Cyrtanthus mackenii中,受精雄配子的DNA损伤和突变对胚和胚乳的发育有不同的影响。电离辐射辐照花粉已被应用于植物育种和遗传研究,单倍体植物诱导主要是通过高剂量辐照使雄性配子失活来实现的。然而,辐照雄配子的受精过程以及胚胎和胚乳的早期发育并没有引起人们的重视。重离子束是辐射的一种,作为植物的有效诱变剂已被广泛应用,即使在低剂量辐照下也显示出很高的突变率。在这项研究中,我们分析了用低剂量碳离子束照射 Cyrtanthus mackenii 雄配子对受精的影响。在由经过辐照的花粉粒授粉产生的未成熟种子中,我们观察到两种类型的胚囊:带有正常发育的胚和胚乳的胚囊和带有卵细胞或未分裂的合子和胚乳的胚囊。染色体分离异常,如染色体桥,只在胚乳核中观察到,而与是否存在胚胎发生无关。因此,在 Cyrtanthus 中,胚胎发生受到雄配子中 DNA 损伤或突变的强烈影响。此外,在胚和胚乳核中检测到了不同的 DNA 含量,胚乳核中可能发生了内复制。由于碳离子辐照即使在低剂量下也会导致染色体重排,因此花粉辐照可作为研究双受精和突变遗传性的有趣工具。
{"title":"Distinctive development of embryo and endosperm caused by male gametes irradiated with carbon-ion beam.","authors":"Tomonari Hirano, Muneaki Murata, Yurie Watarikawa, Yoichiro Hoshino, Tomoko Abe, Hisato Kunitake","doi":"10.1007/s00497-024-00496-9","DOIUrl":"10.1007/s00497-024-00496-9","url":null,"abstract":"<p><strong>Key message: </strong>In Cyrtanthus mackenii, development of embryo and endosperm were differentially affected by fertilization of male gametes with DNA damage and mutations. Pollen irradiation with ionizing radiations has been applied in plant breeding and genetic research, and haploid plant induction has mainly been performed by male inactivation with high-dose irradiation. However, the fertilization process of irradiated male gametes and the early development of embryo and endosperm have not received much attention. Heavy-ion beams, a type of radiation, have been widely applied as effective mutagens for plants and show a high mutation rate even at low-dose irradiation. In this study, we analyzed the effects of male gametes of Cyrtanthus mackenii irradiated with a carbon-ion beam at low doses on fertilization. In immature seeds derived from the pollination of irradiated pollen grains, two types of embryo sacs were observed: embryo sac with a normally developed embryo and endosperm and embryo sac with an egg cell or an undivided zygote and an endosperm. Abnormalities in chromosome segregation, such as chromosomal bridges, were observed only in the endosperm nuclei, irrespective of the presence or absence of embryogenesis. Therefore, in Cyrtanthus, embryogenesis is strongly affected by DNA damage or mutations in male gametes. Moreover, various DNA contents were detected in the embryo and endosperm nuclei, and endoreduplication may have occurred in the endosperm nuclei. As carbon-ion irradiation causes chromosomal rearrangements even at low doses, pollen irradiation can be an interesting tool for studying double fertilization and mutation heritability.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"355-363"},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-05DOI: 10.1007/s00497-023-00484-5
Rasha Althiab-Almasaud, Eve Teyssier, Christian Chervin, Mark A Johnson, Jean-Claude Mollet
Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.
{"title":"Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement.","authors":"Rasha Althiab-Almasaud, Eve Teyssier, Christian Chervin, Mark A Johnson, Jean-Claude Mollet","doi":"10.1007/s00497-023-00484-5","DOIUrl":"10.1007/s00497-023-00484-5","url":null,"abstract":"<p><p>Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"273-293"},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71488664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-14DOI: 10.1007/s00497-024-00497-8
Sotirios Fragkostefanakis, Michal Lieberman-Lazarovich, David Honys
{"title":"\"Resilience in crop reproduction for food security: introducing RECROP COST action\".","authors":"Sotirios Fragkostefanakis, Michal Lieberman-Lazarovich, David Honys","doi":"10.1007/s00497-024-00497-8","DOIUrl":"10.1007/s00497-024-00497-8","url":null,"abstract":"","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"271-272"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-15DOI: 10.1007/s00497-023-00486-3
Yuan Yao, Wenhui Fu, Yue Yu, Suyan Wan, Wenping Zhang, Ray Ming
Papaya is a tropical fruit crop renowned for its rich nutrition, particularly pro-vitamin A. Aroma substances are a major component of fruit quality. While extensive research has been conducted on papaya aroma, there has been a notable lack of in-depth research into a specific class of substances. To bridge this gap, our study focused on analyzing the aroma components of various papaya varieties and their biosynthesis pathways. We compared the volatile components of three papaya varieties with distinct flavors at various ripeness stages. A continuous accumulation of linalool, a volatile compound, in the 'AU9' fruit was detected as it matured. The linalool content reached 56% of the total volatile components upon full ripening. Notably, this percentage was significantly higher than that observed in the other two varieties, 'ZhongBai' and 'Malaysian 7', indicating that linalool serves as the primary component influencing the papaya's odor. Subsequently, we identified CpTPS18, a gene associated with linalool biosynthesis, and demonstrated its ability to catalyze linalool production from GPP and enhance its accumulation through overexpression in papaya fruits, both in vivo and in vitro. Based on transcriptomic analysis, it was predicted that CpMYB56 and CpNAC56 may transcriptionally activate the expression of CpTPS18. Subsequent yeast one-hybrid assay and dual luciferase analysis revealed that CpNAC56 activates the transcription of CpTPS18. Transient overexpression in vivo demonstrated that this gene could upregulate the expression of CpTPS18 and promote linalool accumulation. These results uncovered the primary volatile molecule responsible for papaya fruit odor and identified two major genes influencing its biosynthesis. The genomic resources and information obtained from this study will expedite papaya improvement for fruit quality.
{"title":"The synthesis of papaya fruit flavor-related linalool was regulated by CpTPS18 and CpNAC56.","authors":"Yuan Yao, Wenhui Fu, Yue Yu, Suyan Wan, Wenping Zhang, Ray Ming","doi":"10.1007/s00497-023-00486-3","DOIUrl":"10.1007/s00497-023-00486-3","url":null,"abstract":"<p><p>Papaya is a tropical fruit crop renowned for its rich nutrition, particularly pro-vitamin A. Aroma substances are a major component of fruit quality. While extensive research has been conducted on papaya aroma, there has been a notable lack of in-depth research into a specific class of substances. To bridge this gap, our study focused on analyzing the aroma components of various papaya varieties and their biosynthesis pathways. We compared the volatile components of three papaya varieties with distinct flavors at various ripeness stages. A continuous accumulation of linalool, a volatile compound, in the 'AU9' fruit was detected as it matured. The linalool content reached 56% of the total volatile components upon full ripening. Notably, this percentage was significantly higher than that observed in the other two varieties, 'ZhongBai' and 'Malaysian 7', indicating that linalool serves as the primary component influencing the papaya's odor. Subsequently, we identified CpTPS18, a gene associated with linalool biosynthesis, and demonstrated its ability to catalyze linalool production from GPP and enhance its accumulation through overexpression in papaya fruits, both in vivo and in vitro. Based on transcriptomic analysis, it was predicted that CpMYB56 and CpNAC56 may transcriptionally activate the expression of CpTPS18. Subsequent yeast one-hybrid assay and dual luciferase analysis revealed that CpNAC56 activates the transcription of CpTPS18. Transient overexpression in vivo demonstrated that this gene could upregulate the expression of CpTPS18 and promote linalool accumulation. These results uncovered the primary volatile molecule responsible for papaya fruit odor and identified two major genes influencing its biosynthesis. The genomic resources and information obtained from this study will expedite papaya improvement for fruit quality.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"295-308"},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107592771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-01-31DOI: 10.1007/s00497-024-00495-w
Raquel Figueiredo, Mónica Costa, Diana Moreira, Miguel Moreira, Jennifer Noble, Luís Gustavo Pereira, Paula Melo, Ravishankar Palanivelu, Sílvia Coimbra, Ana Marta Pereira
Key message: GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.
{"title":"JAGGER localization and function are dependent on GPI anchor addition.","authors":"Raquel Figueiredo, Mónica Costa, Diana Moreira, Miguel Moreira, Jennifer Noble, Luís Gustavo Pereira, Paula Melo, Ravishankar Palanivelu, Sílvia Coimbra, Ana Marta Pereira","doi":"10.1007/s00497-024-00495-w","DOIUrl":"10.1007/s00497-024-00495-w","url":null,"abstract":"<p><strong>Key message: </strong>GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"341-353"},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-12-01DOI: 10.1007/s00497-023-00488-1
Stuart R Macgregor, Paula K S Beronilla, Daphne R Goring
Key message: The VAMP721, VAMP722, SYP121, SYP122 and SNAP33 SNAREs are required in the Arabidopsis stigma for pollen hydration, further supporting a role for vesicle trafficking in the stigma's pollen responses. In the Brassicaceae, the process of accepting compatible pollen is a key step in successful reproduction and highly regulated following interactions between the pollen and the stigma. Central to this is the initiation of secretion in the stigma, which is proposed to provide resources to the pollen for hydration and germination and pollen tube growth. Previously, the eight exocyst subunit genes were shown to be required in the Arabidopsis stigma to support these pollen responses. One of the roles of the exocyst is to tether secretory vesicles at the plasma membrane for membrane fusion by the SNARE complex to enable vesicle cargo release. Here, we investigate the role of Arabidopsis SNARE genes in the stigma for pollen responses. Using a combination of different knockout and knockdown SNARE mutant lines, we show that VAMP721, VAMP722, SYP121, SYP122 and SNAP33 are involved in this process. Significant disruptions in pollen hydration were observed following pollination of wildtype pollen on the mutant SNARE stigmas. Overall, these results place the Arabidopsis SNARE complex as a contributor in the stigma for pollen responses and reaffirm the significance of secretion in the stigma to support the pollen-stigma interactions.
{"title":"The Arabidopsis SNARE complex genes regulate the early stages of pollen-stigma interactions.","authors":"Stuart R Macgregor, Paula K S Beronilla, Daphne R Goring","doi":"10.1007/s00497-023-00488-1","DOIUrl":"10.1007/s00497-023-00488-1","url":null,"abstract":"<p><strong>Key message: </strong>The VAMP721, VAMP722, SYP121, SYP122 and SNAP33 SNAREs are required in the Arabidopsis stigma for pollen hydration, further supporting a role for vesicle trafficking in the stigma's pollen responses. In the Brassicaceae, the process of accepting compatible pollen is a key step in successful reproduction and highly regulated following interactions between the pollen and the stigma. Central to this is the initiation of secretion in the stigma, which is proposed to provide resources to the pollen for hydration and germination and pollen tube growth. Previously, the eight exocyst subunit genes were shown to be required in the Arabidopsis stigma to support these pollen responses. One of the roles of the exocyst is to tether secretory vesicles at the plasma membrane for membrane fusion by the SNARE complex to enable vesicle cargo release. Here, we investigate the role of Arabidopsis SNARE genes in the stigma for pollen responses. Using a combination of different knockout and knockdown SNARE mutant lines, we show that VAMP721, VAMP722, SYP121, SYP122 and SNAP33 are involved in this process. Significant disruptions in pollen hydration were observed following pollination of wildtype pollen on the mutant SNARE stigmas. Overall, these results place the Arabidopsis SNARE complex as a contributor in the stigma for pollen responses and reaffirm the significance of secretion in the stigma to support the pollen-stigma interactions.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"309-320"},"PeriodicalIF":2.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}