Pub Date : 2024-01-13DOI: 10.1007/s00497-023-00492-5
Adrian S. Monthony, Maxime de Ronne, Davoud Torkamaneh
Key message
Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species.
Abstract
Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
关键信息本文介绍了大麻的阳循环模型、乙烯生物合成和信号通路。摘要 性可塑性是指生物体在不改变其性染色体的情况下,具有根据环境和生理刺激改变其表型性别的能力。大麻(Cannabis sativa L.)是一种具有药用价值的植物物种,当受到影响乙烯生物合成和信号转导的特定化学物质作用时,会表现出性可塑性。然而,乙烯相关基因(ERGs)对大麻性可塑性的确切贡献仍有待探索。目前的研究以拟南芥为模式生物,进行了基因同源分析,并重建了拟南芥的阳循环、乙烯生物合成和乙烯信号通路。此外,还研究了包括雄花、雌花和化学诱导雄花在内的两个转录组数据集,以确定与性决定和性可塑性相关的ERGs的表达模式。这些与性可塑性有关的ERG被分为两种不同的表达模式:花器官一致性(FOC)和独特性(uERG)。此外,还提出了第三种表达模式,称为核型一致(KC)表达,在性别决定中发挥作用。研究发现,与性可塑性相关的 CsERGs 分散在整个基因组中,并不局限于性染色体,这表明 C. sativa 的性可塑性受到广泛调控。
{"title":"Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity","authors":"Adrian S. Monthony, Maxime de Ronne, Davoud Torkamaneh","doi":"10.1007/s00497-023-00492-5","DOIUrl":"https://doi.org/10.1007/s00497-023-00492-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Key message</h3><p>Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in <i>Cannabis sativa</i>. <i>C. sativa</i> floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. <i>Cannabis sativa</i> L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed <i>Arabidopsis thaliana</i> L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in <i>C. sativa</i>. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in <i>C. sativa</i>.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1007/s00497-023-00489-0
Laura Hernández-Soriano, Laura Gálvez-Sandre, Emmanuel Ávila de Dios, June Simpson
Key message
Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in A. tequilana.
Abstract
Flowering in commercial plantations of Agave tequilana signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of A. tequilana FLOWERING LOCUS T (FT) genes by heterologous expression in A. thaliana and in situ hybridization in agave plants. The gene structures of the Agave tequilana FT family are also described and putative regulatory promoter elements were identified. Most Agave species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in A. tequilana.
关键信息龙舌兰开花基因座 T 蛋白的拮抗表达以及通过 miRNAs 和糖代谢的老化途径调控龙舌兰开花的启动 摘要龙舌兰商业种植园的开花标志着植株已准备好收获龙舌兰酒。然而,开花的时间往往是不可预测的,详细了解开花的过程将有利于田间管理、育种和未来研究的发展。本报告介绍了通过在 A. thaliana 中进行异源表达和在龙舌兰植物中进行原位杂交,对龙舌兰花序位点 T(FT)基因进行的功能分析。此外,还描述了龙舌兰 FT 家族的基因结构,并确定了推定的调控启动子元件。大多数龙舌兰物种都是多年生单花植物,生命周期可长达 25 年以上,在此期间,植物不会对诱导开花的正常环境信号做出反应,这表明拟南芥中描述的老化途径可能在决定这些物种的开花时间方面发挥了重要作用。本文分析了这一途径的各个环节,并提供了硅学数据,这些数据支持在龙舌兰开花初期,通过与 miRNAs 156、172 和 164 的相互作用,对 SQUAMOSA PROMOTER BINDING LIKE 蛋白 (SPL)、APETALA2 (AP2) 蛋白和植物糖苷水解酶家族 32 (PGHF32) 成员进行调控。
{"title":"How to awaken a sleeping giant: antagonistic expression of Flowering locus T homologs and elements of the age-related pathway are associated with the flowering transition in Agave tequilana","authors":"Laura Hernández-Soriano, Laura Gálvez-Sandre, Emmanuel Ávila de Dios, June Simpson","doi":"10.1007/s00497-023-00489-0","DOIUrl":"https://doi.org/10.1007/s00497-023-00489-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Key message</h3><p>Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in <i>A. tequilana</i>.</p><h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Flowering in commercial plantations of <i>Agave tequilana</i> signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of <i>A. tequilana</i> FLOWERING LOCUS T (FT) genes by heterologous expression in <i>A. thaliana</i> and in situ hybridization in agave plants. The gene structures of the <i>Agave tequilana</i> FT family are also described and putative regulatory promoter elements were identified. Most <i>Agave</i> species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in <i>A. tequilana</i>.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"6 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-25DOI: 10.1007/s00497-023-00474-7
Hengping Xu, Laura Bartley, Marc Libault, Venkatesan Sundaresan, Hong Fu, Scott Russell
The cell cycle controls division and proliferation of all eukaryotic cells and is tightly regulated at multiple checkpoints by complexes of core cell cycle proteins. Due to the difficulty in accessing female gametes and zygotes of flowering plants, little is known about the molecular mechanisms underlying embryogenesis initiation despite the crucial importance of this process for seed crops. In this study, we reveal three levels of factors involved in rice zygotic cell cycle control and characterize their functions and regulation. Protein-protein interaction studies, including within zygote cells, and in vitro biochemical analyses delineate a model of the zygotic cell cycle core complex for rice. In this model, CDKB1, a major regulator of plant mitosis, is a cyclin (CYCD5)-dependent kinase; its activity is coordinately inhibited by two cell cycle inhibitors, KRP4 and KRP5; and both KRPs are regulated via F-box protein 3 (FB3)-mediated proteolysis. Supporting their critical roles in controlling the rice zygotic cell cycle, mutations in KRP4, KRP5 and FB3 result in the compromised function of sperm cells and abnormal organization of female germ units, embryo and endosperm, thus significantly reducing seed-set rate. This work helps reveal regulatory mechanisms controlling the zygotic cell cycle toward seed formation in angiosperms.
{"title":"The roles of a novel CDKB/KRP/FB3 cell cycle core complex in rice gametes and initiation of embryogenesis.","authors":"Hengping Xu, Laura Bartley, Marc Libault, Venkatesan Sundaresan, Hong Fu, Scott Russell","doi":"10.1007/s00497-023-00474-7","DOIUrl":"10.1007/s00497-023-00474-7","url":null,"abstract":"<p><p>The cell cycle controls division and proliferation of all eukaryotic cells and is tightly regulated at multiple checkpoints by complexes of core cell cycle proteins. Due to the difficulty in accessing female gametes and zygotes of flowering plants, little is known about the molecular mechanisms underlying embryogenesis initiation despite the crucial importance of this process for seed crops. In this study, we reveal three levels of factors involved in rice zygotic cell cycle control and characterize their functions and regulation. Protein-protein interaction studies, including within zygote cells, and in vitro biochemical analyses delineate a model of the zygotic cell cycle core complex for rice. In this model, CDKB1, a major regulator of plant mitosis, is a cyclin (CYCD5)-dependent kinase; its activity is coordinately inhibited by two cell cycle inhibitors, KRP4 and KRP5; and both KRPs are regulated via F-box protein 3 (FB3)-mediated proteolysis. Supporting their critical roles in controlling the rice zygotic cell cycle, mutations in KRP4, KRP5 and FB3 result in the compromised function of sperm cells and abnormal organization of female germ units, embryo and endosperm, thus significantly reducing seed-set rate. This work helps reveal regulatory mechanisms controlling the zygotic cell cycle toward seed formation in angiosperms.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"301-320"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10228680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-06-02DOI: 10.1007/s00497-023-00467-6
Judit Sánchez-Simarro, Fernando Aniento, María Jesús Marcote
Coat protein I (COPI) and Coat protein II (COPII) coated vesicles mediate protein transport in the early secretory pathway. Although several components of COPII vesicles have been shown to have an essential role in Arabidopsis gametogenesis, the function of COPI components in gametogenesis has not been studied in detail. COPI consists of a heptameric complex made of α, β, β', γ, δ, ɛ, and ζ-COP subunits and most subunits have several isoforms in Arabidopsis. We have found that two isoforms of the β'-COP subunit, β'1-COP and β'2-COP, are required for female and male gametophyte development. Reciprocal crosses between wild type plants and plants heterozygous for T-DNA insertions in β'1-COP and β'2-COP showed that β'1β'2-cop gametophytes are not transmitted.
{"title":"The presence of β'1-COP and β'2-COP is required for female and male gametophyte development.","authors":"Judit Sánchez-Simarro, Fernando Aniento, María Jesús Marcote","doi":"10.1007/s00497-023-00467-6","DOIUrl":"10.1007/s00497-023-00467-6","url":null,"abstract":"<p><p>Coat protein I (COPI) and Coat protein II (COPII) coated vesicles mediate protein transport in the early secretory pathway. Although several components of COPII vesicles have been shown to have an essential role in Arabidopsis gametogenesis, the function of COPI components in gametogenesis has not been studied in detail. COPI consists of a heptameric complex made of α, β, β', γ, δ, ɛ, and ζ-COP subunits and most subunits have several isoforms in Arabidopsis. We have found that two isoforms of the β'-COP subunit, β'1-COP and β'2-COP, are required for female and male gametophyte development. Reciprocal crosses between wild type plants and plants heterozygous for T-DNA insertions in β'1-COP and β'2-COP showed that β'1β'2-cop gametophytes are not transmitted.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"343-347"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9566111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: Functional loss of Arabidopsis Sar1b with that of either Sar1a or Sar1c inhibits mitosis of functional megaspores, leading to defective embryo sac formation and reduced fertility. Vesicular trafficking among diverse endomembrane compartments is critical for eukaryotic cells. Anterograde trafficking from endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat protein complex II (COPII) vesicles. Among five cytosolic components of COPII, secretion-associated Ras-related GTPase 1 (Sar1) mediates the assembly and disassembly of the COPII coat. Five genes in Arabidopsis encode Sar1 isoforms, whose different cargo specificities and redundancy were both reported. We show here that Arabidopsis Sar1a, Sar1b, and Sar1c mediate the development of female gametophytes (FGs), in which Sar1b plays a major role, whereas Sar1a and Sar1c play a minor role. We determined that female transmission of sar1a;sar1b or sar1c;sar1b was significantly reduced due to defective mitosis of functional megaspores. Half of ovules in sar1a;sar1b/+ or sar1c;sar1b/+ plants failed to attract pollen tubes, leading to fertilization failure. The homozygous sar1a;sar1b or sar1c;sar1b double mutant was obtained by introducing either UBQ10:GFP-Sar1b or UBQ10:GFP-Sar1c, supporting their redundant function in FG development.
{"title":"Arabidopsis Sar1 isoforms play redundant roles in female gametophytic development.","authors":"Xin Liang, Shan-Wei Li, Jin-Li Wang, Hui-Min Zhao, Sha Li, Yan Zhang","doi":"10.1007/s00497-023-00475-6","DOIUrl":"10.1007/s00497-023-00475-6","url":null,"abstract":"<p><strong>Key message: </strong>Functional loss of Arabidopsis Sar1b with that of either Sar1a or Sar1c inhibits mitosis of functional megaspores, leading to defective embryo sac formation and reduced fertility. Vesicular trafficking among diverse endomembrane compartments is critical for eukaryotic cells. Anterograde trafficking from endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat protein complex II (COPII) vesicles. Among five cytosolic components of COPII, secretion-associated Ras-related GTPase 1 (Sar1) mediates the assembly and disassembly of the COPII coat. Five genes in Arabidopsis encode Sar1 isoforms, whose different cargo specificities and redundancy were both reported. We show here that Arabidopsis Sar1a, Sar1b, and Sar1c mediate the development of female gametophytes (FGs), in which Sar1b plays a major role, whereas Sar1a and Sar1c play a minor role. We determined that female transmission of sar1a;sar1b or sar1c;sar1b was significantly reduced due to defective mitosis of functional megaspores. Half of ovules in sar1a;sar1b/+ or sar1c;sar1b/+ plants failed to attract pollen tubes, leading to fertilization failure. The homozygous sar1a;sar1b or sar1c;sar1b double mutant was obtained by introducing either UBQ10:GFP-Sar1b or UBQ10:GFP-Sar1c, supporting their redundant function in FG development.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"349-354"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9924456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.
{"title":"Genome-wide identification of the C2H2-Zinc finger gene family and functional validation of CsZFP7 in citrus nucellar embryogenesis.","authors":"Hui-Hui Jia, Yuan-Tao Xu, Zhu-Jun Yin, Mei Qing, Kai-Dong Xie, Wen-Wu Guo, Xiao-Meng Wu","doi":"10.1007/s00497-023-00470-x","DOIUrl":"10.1007/s00497-023-00470-x","url":null,"abstract":"<p><strong>Key message: </strong>Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"287-300"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-08-02DOI: 10.1007/s00497-023-00476-5
Jan Ptáček, Libor Ekrt, Ondřej Hornych, Tomáš Urfus
Key message: Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with "normal" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.
{"title":"Interploidy gene flow via a 'pentaploid bridge' and ploidy reduction in Cystopteris fragilis fern complex (Cystopteridaceae: Polypodiales).","authors":"Jan Ptáček, Libor Ekrt, Ondřej Hornych, Tomáš Urfus","doi":"10.1007/s00497-023-00476-5","DOIUrl":"10.1007/s00497-023-00476-5","url":null,"abstract":"<p><strong>Key message: </strong>Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with \"normal\" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"321-331"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9927276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-08-02DOI: 10.1007/s00497-023-00477-4
Danilo Massuia Rocha, Fernanda Mayara Nogueira, Thiago André, Jorge Ernesto de Araujo Mariath, André Luís Laforga Vanzela
Key message: Asymmetric meiosis leading to the release of pollen grains as pseudomonads is a synapomorphy in Cyperaceae, but differences in microspore development are relevant in the family's evolutionary history. Cyperaceae members present atypical microsporogenesis, in which one meiotic product is functional while the other three degenerate, culminating in pseudomonad pollen formation. Differences during development, such as pseudomonad shape and degenerative microspore positioning, are seen throughout the family, but no phylogenetic interpretation has been made regarding these variances thus far. In this study, we analyzed the early- and late-diverging sedge genera Hypolytrum and Eleocharis, respectively, while comparing them to data available in the literature and conducting an ancestral character reconstruction for pseudomonad traits. Light microscopy results show that pseudomonad development in Hypolytrum is homologous to several other sedge genera, presenting apical degenerative microspores. However, pseudomonads are round and centrally arranged in the anther locule in this case, which consists of a pleisiomorphic trait for the family. The basal positioning of degenerative microspores is restricted to Rhynchospora, consisting of an apomorphic trait for this genus. Despite these differences, ultrastructural analysis of Eleocharis pseudomonad revealed shared features with other genera studied, which include variations in chromatin condensation and cytoplasmic turnover in functional cells. These common features seem related to the different cellular fates seen during microspore development and further corroborate the synapomorphic status of pseudomonads in sedges.
{"title":"Evolutionary features of microspore and pollen grain development in Cyperaceae.","authors":"Danilo Massuia Rocha, Fernanda Mayara Nogueira, Thiago André, Jorge Ernesto de Araujo Mariath, André Luís Laforga Vanzela","doi":"10.1007/s00497-023-00477-4","DOIUrl":"10.1007/s00497-023-00477-4","url":null,"abstract":"<p><strong>Key message: </strong>Asymmetric meiosis leading to the release of pollen grains as pseudomonads is a synapomorphy in Cyperaceae, but differences in microspore development are relevant in the family's evolutionary history. Cyperaceae members present atypical microsporogenesis, in which one meiotic product is functional while the other three degenerate, culminating in pseudomonad pollen formation. Differences during development, such as pseudomonad shape and degenerative microspore positioning, are seen throughout the family, but no phylogenetic interpretation has been made regarding these variances thus far. In this study, we analyzed the early- and late-diverging sedge genera Hypolytrum and Eleocharis, respectively, while comparing them to data available in the literature and conducting an ancestral character reconstruction for pseudomonad traits. Light microscopy results show that pseudomonad development in Hypolytrum is homologous to several other sedge genera, presenting apical degenerative microspores. However, pseudomonads are round and centrally arranged in the anther locule in this case, which consists of a pleisiomorphic trait for the family. The basal positioning of degenerative microspores is restricted to Rhynchospora, consisting of an apomorphic trait for this genus. Despite these differences, ultrastructural analysis of Eleocharis pseudomonad revealed shared features with other genera studied, which include variations in chromatin condensation and cytoplasmic turnover in functional cells. These common features seem related to the different cellular fates seen during microspore development and further corroborate the synapomorphic status of pseudomonads in sedges.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"333-342"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-06-06DOI: 10.1007/s00497-023-00472-9
Akira Yamazaki, Ao Takezawa, Kyoka Nagasaka, Ko Motoki, Kazusa Nishimura, Ryohei Nakano, Tetsuya Nakazaki
The pollen germination rate decreases under various abiotic stresses, such as high-temperature stress, and it is one of the causes of inhibition of plant reproduction. Thus, measuring pollen germination rate is vital for understanding the reproductive ability of plants. However, measuring the pollen germination rate requires much labor when counting pollen. Therefore, we used the Yolov5 machine learning package in order to perform transfer learning and constructed a model that can detect germinated and non-germinated pollen separately. Pollen images of the chili pepper, Capsicum annuum, were used to create this model. Using images with a width of 640 pixels for training constructed a more accurate model than using images with a width of 320 pixels. This model could estimate the pollen germination rate of the F2 population of C. chinense previously studied with high accuracy. In addition, significantly associated gene regions previously detected in genome-wide association studies in this F2 population could again be detected using the pollen germination rate predicted by this model as a trait. Moreover, the model detected rose, tomato, radish, and strawberry pollen grains with similar accuracy to chili pepper. The pollen germination rate could be estimated even for plants other than chili pepper, probably because pollen images were similar among different plant species. We obtained a model that can identify genes related to pollen germination rate through genetic analyses in many plants.
{"title":"A simple method for measuring pollen germination rate using machine learning.","authors":"Akira Yamazaki, Ao Takezawa, Kyoka Nagasaka, Ko Motoki, Kazusa Nishimura, Ryohei Nakano, Tetsuya Nakazaki","doi":"10.1007/s00497-023-00472-9","DOIUrl":"10.1007/s00497-023-00472-9","url":null,"abstract":"<p><p>The pollen germination rate decreases under various abiotic stresses, such as high-temperature stress, and it is one of the causes of inhibition of plant reproduction. Thus, measuring pollen germination rate is vital for understanding the reproductive ability of plants. However, measuring the pollen germination rate requires much labor when counting pollen. Therefore, we used the Yolov5 machine learning package in order to perform transfer learning and constructed a model that can detect germinated and non-germinated pollen separately. Pollen images of the chili pepper, Capsicum annuum, were used to create this model. Using images with a width of 640 pixels for training constructed a more accurate model than using images with a width of 320 pixels. This model could estimate the pollen germination rate of the F<sub>2</sub> population of C. chinense previously studied with high accuracy. In addition, significantly associated gene regions previously detected in genome-wide association studies in this F<sub>2</sub> population could again be detected using the pollen germination rate predicted by this model as a trait. Moreover, the model detected rose, tomato, radish, and strawberry pollen grains with similar accuracy to chili pepper. The pollen germination rate could be estimated even for plants other than chili pepper, probably because pollen images were similar among different plant species. We obtained a model that can identify genes related to pollen germination rate through genetic analyses in many plants.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":" ","pages":"355-364"},"PeriodicalIF":3.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1007/s00497-023-00462-x
Abdur Rauf, Hoda Khatab, Michael Borg, David Twell
Key message: The main features of generative cell morphogenesis, formation of a cytoplasmic projection and elongation of the GC body, operate through independent genetic pathways. Male gametogenesis in developing angiosperm pollen involves distinctive changes in cell morphogenesis. Re-shaping and elongation of the generative cell (GC) are linked to the formation of a GC cytoplasmic projection connected to the vegetative cell nucleus. Although genetic control of GC morphogenesis is unknown, we suspected the involvement of the germline-specific MYB transcription factor DUO POLLEN1 (DUO1). We used light and fluorescence microscopy to examine male germline development in pollen of wild-type Arabidopsis and in four allelic duo1 mutants expressing introduced cell markers. Our analysis shows that the undivided GC in duo1 pollen forms a cytoplasmic projection, but the cell body fails to elongate. In contrast GCs of cyclin-dependent kinase function mutants, which fail to divide like duo1 mutants, achieve normal morphogenesis. We conclude that DUO1 has an essential role in the elongation of the GC, but DUO1-independent pathways control the development of the GC cytoplasmic projection. The two main features of GC morphogenesis therefore operate through independently regulated genetic pathways.
{"title":"Genetic control of generative cell shape by DUO1 in Arabidopsis.","authors":"Abdur Rauf, Hoda Khatab, Michael Borg, David Twell","doi":"10.1007/s00497-023-00462-x","DOIUrl":"https://doi.org/10.1007/s00497-023-00462-x","url":null,"abstract":"<p><strong>Key message: </strong>The main features of generative cell morphogenesis, formation of a cytoplasmic projection and elongation of the GC body, operate through independent genetic pathways. Male gametogenesis in developing angiosperm pollen involves distinctive changes in cell morphogenesis. Re-shaping and elongation of the generative cell (GC) are linked to the formation of a GC cytoplasmic projection connected to the vegetative cell nucleus. Although genetic control of GC morphogenesis is unknown, we suspected the involvement of the germline-specific MYB transcription factor DUO POLLEN1 (DUO1). We used light and fluorescence microscopy to examine male germline development in pollen of wild-type Arabidopsis and in four allelic duo1 mutants expressing introduced cell markers. Our analysis shows that the undivided GC in duo1 pollen forms a cytoplasmic projection, but the cell body fails to elongate. In contrast GCs of cyclin-dependent kinase function mutants, which fail to divide like duo1 mutants, achieve normal morphogenesis. We conclude that DUO1 has an essential role in the elongation of the GC, but DUO1-independent pathways control the development of the GC cytoplasmic projection. The two main features of GC morphogenesis therefore operate through independently regulated genetic pathways.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"36 3","pages":"243-254"},"PeriodicalIF":3.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9914347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}