首页 > 最新文献

Applied Catalysis B: Environment and Energy最新文献

英文 中文
Coupling Ir single atom with NiFe LDH/NiMo heterointerface toward efficient and durable water splitting at large current density 将 Ir 单原子与 NiFe LDH/NiMo 异质表面耦合,实现大电流密度下高效持久的水分离
Pub Date : 2024-08-27 DOI: 10.1016/j.apcatb.2024.124548
Yuewen Wu, Mingpeng Chen, Huachuan Sun, Tong Zhou, Xinqi Chen, Guohao Na, Guoyang Qiu, Dequan Li, Nan Yang, Hongshun Zheng, Yun Chen, Boxue Wang, Jianhong Zhao, Yumin Zhang, Jin Zhang, Feng Liu, Hao Cui, Tianwei He, Qingju Liu
Developing efficient and robust bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at large current density is important to facilitate the industrial water splitting. Herein, a promising strategy is presented to couple Ir single atom with NiFe LDH/NiMo heterointerface. Ir-NiFe LDH/NiMo requires ultralow overpotentials of 139/236 mV and 350/450 mV to deliver large current densities of 500 and 1000 mA cm for HER/OER in 1 M KOH. Moreover, the electrode shows remarkable durability of 10000 cycles and long-term durability at 500 mA cm over 500 h for both HER and OER. The water electrolyzer exhibits a low cell voltage of 1.84 V to attain 500 mA cm. The theoretical calculations decipher that the Ir single atom modulates the electronic property of catalyst, which tunes the adsorption strength of the key reaction intermediates and boosts the overall water splitting.
开发高效、稳健的双功能电催化剂,在大电流密度下同时进行氢进化反应(HER)和氧进化反应(OER),对于促进工业用水的分离非常重要。本文提出了一种将铱单原子与 NiFe LDH/NiMo 异质界面耦合的可行策略。Ir-NiFe LDH/NiMo 需要 139/236 mV 和 350/450 mV 的超低过电位,才能在 1 M KOH 中为 HER/OER 提供 500 和 1000 mA cm 的大电流密度。此外,该电极在 10000 次循环中表现出卓越的耐久性,在 500 mA cm 的条件下,HER 和 OER 的长期耐久性超过 500 h。水电解槽的电池电压低至 1.84 V,即可达到 500 mA cm。理论计算表明,Ir 单原子调节了催化剂的电子特性,从而调整了关键反应中间产物的吸附强度,提高了整体水分离效果。
{"title":"Coupling Ir single atom with NiFe LDH/NiMo heterointerface toward efficient and durable water splitting at large current density","authors":"Yuewen Wu, Mingpeng Chen, Huachuan Sun, Tong Zhou, Xinqi Chen, Guohao Na, Guoyang Qiu, Dequan Li, Nan Yang, Hongshun Zheng, Yun Chen, Boxue Wang, Jianhong Zhao, Yumin Zhang, Jin Zhang, Feng Liu, Hao Cui, Tianwei He, Qingju Liu","doi":"10.1016/j.apcatb.2024.124548","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124548","url":null,"abstract":"Developing efficient and robust bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at large current density is important to facilitate the industrial water splitting. Herein, a promising strategy is presented to couple Ir single atom with NiFe LDH/NiMo heterointerface. Ir-NiFe LDH/NiMo requires ultralow overpotentials of 139/236 mV and 350/450 mV to deliver large current densities of 500 and 1000 mA cm for HER/OER in 1 M KOH. Moreover, the electrode shows remarkable durability of 10000 cycles and long-term durability at 500 mA cm over 500 h for both HER and OER. The water electrolyzer exhibits a low cell voltage of 1.84 V to attain 500 mA cm. The theoretical calculations decipher that the Ir single atom modulates the electronic property of catalyst, which tunes the adsorption strength of the key reaction intermediates and boosts the overall water splitting.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A significant enhancement for hydrogenolysis of glycerol to 1,3-propanediol over Pt/W-SiO2 catalyst by tungsten oxide and silica interaction 氧化钨和二氧化硅的相互作用显著提高了 Pt/W-SiO2 催化剂将甘油加氢分解为 1,3-丙二醇的能力
Pub Date : 2024-08-27 DOI: 10.1016/j.apcatb.2024.124524
Yang Li, Jian Zhang, Hao Meng, Dongquan Lin, Feng-Shou Xiao
Pt-W based catalyst is one of effective catalysts for hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO), where the interaction between Pt and tungsten oxide (WO) has been considered as a crucial factor for the activity, but interactions between WO and supports are rarely studied. In this study, we investigated the SiO-WO interaction over Pt/W-SiO catalysts by adjusting silanols on the silica supports, and it is demonstrated that weaker WO-SiO interaction benefits Pt-WO interaction (larger Pt-WO coordinations), which is helpful for glycerol hydrogenolysis to 1,3-PDO. For example, Pt/W-SiO-700 (calcination at 700 °C for removing most of silanols in the silica support to have larger Pt-WO coordinations) exhibits a glycerol conversion at 70.9 % with excellent 1,3-PDO selectivity of 61.3 % at a mild temperature of 140 °C. Experimental results and theoretical calculations support that larger Pt-WO coordination favors hydrogen spillover to form more isolated WO-H species, which are favorable for glycerol hydrogenolysis to 1,3-PDO.
铂-氧化钨催化剂是将甘油加氢分解为 1,3-丙二醇(1,3-PDO)的有效催化剂之一,其中铂与氧化钨(WO)之间的相互作用被认为是影响催化剂活性的关键因素,但很少有人研究 WO 与载体之间的相互作用。在本研究中,我们通过调整二氧化硅载体上的硅烷醇,研究了 Pt/W-SiO 催化剂上的 SiO-WO 相互作用,结果表明,较弱的 WO-SiO 相互作用有利于 Pt-WO 相互作用(较大的 Pt-WO 配位),这有助于甘油加氢分解为 1,3-PDO。例如,Pt/W-SiO-700(在 700 ℃ 下煅烧以去除二氧化硅支持物中的大部分硅烷醇,从而获得较大的 Pt-WO 配位)在 140 ℃ 的温和温度下,甘油转化率达到 70.9%,1,3-PDO 选择性达到 61.3%。实验结果和理论计算证明,较大的 Pt-WO 配位有利于氢溢出,形成更多孤立的 WO-H 物种,有利于甘油加氢分解为 1,3-PDO。
{"title":"A significant enhancement for hydrogenolysis of glycerol to 1,3-propanediol over Pt/W-SiO2 catalyst by tungsten oxide and silica interaction","authors":"Yang Li, Jian Zhang, Hao Meng, Dongquan Lin, Feng-Shou Xiao","doi":"10.1016/j.apcatb.2024.124524","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124524","url":null,"abstract":"Pt-W based catalyst is one of effective catalysts for hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO), where the interaction between Pt and tungsten oxide (WO) has been considered as a crucial factor for the activity, but interactions between WO and supports are rarely studied. In this study, we investigated the SiO-WO interaction over Pt/W-SiO catalysts by adjusting silanols on the silica supports, and it is demonstrated that weaker WO-SiO interaction benefits Pt-WO interaction (larger Pt-WO coordinations), which is helpful for glycerol hydrogenolysis to 1,3-PDO. For example, Pt/W-SiO-700 (calcination at 700 °C for removing most of silanols in the silica support to have larger Pt-WO coordinations) exhibits a glycerol conversion at 70.9 % with excellent 1,3-PDO selectivity of 61.3 % at a mild temperature of 140 °C. Experimental results and theoretical calculations support that larger Pt-WO coordination favors hydrogen spillover to form more isolated WO-H species, which are favorable for glycerol hydrogenolysis to 1,3-PDO.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous polyselenoviologen with long-lived charge separated states and highly cyclic stability for heterogeneous photocatalytic reaction and hydrogen production 具有长寿命电荷分离态和高度循环稳定性的多孔聚硒藻,可用于异相光催化反应和制氢
Pub Date : 2024-08-26 DOI: 10.1016/j.apcatb.2024.124537
Yujing Gao, Qi Sun, Chenjing Liu, Yawen Li, Sikun Zhang, Guoping Li, Gang He
A highly stable heterogeneous photocatalyst, porous polyselenoviologen (POP-SeV), was successfully synthesized via S2 reaction. Compared to the monomer, POP-SeV exhibited strong visible-light absorption, enhanced electron acceptor property, and prolonged lifetime of radical cations. Simultaneously, the femtosecond transient absorption (fs-TA) illustrated that the formation of tetrahedral multi-cationic structure is conducive to the rapid generation of molecular excited states and extending the duration of charge-separated states. Due to its remarkable characteristics, the POP-SeV was employed as a photocatalyst for visible-light-induced cross-dehydrogenative coupling (CDC) reactions with a highly efficient yield (82 %). Additionally, its utilization was further extended to the hydrogen generation, demonstrating remarkable outcomes such as a high rate of H generation (300 μmol·h·g), and an apparent quantum yield (0.13 %). Notably, POP-SeV displayed great stability and reusability in the photocatalytic process, which can distinguish it from those soluble SeV-based photocatalysts. The catalytic efficiency of POP-SeV remained virtually unaffected even after undergoing several recycling cycles, which not only achieved the complete heterogeneous photocatalysis of SeV-based systems for the first time but also provided a new strategy to improve the application effect of viologen derivatives in solar energy conversion and utilization.
通过 S2 反应,成功合成了一种高度稳定的异质光催化剂--多孔聚硒维欧根(POP-SeV)。与单体相比,POP-SeV 具有很强的可见光吸收能力、更强的电子受体特性和更长的自由基阳离子寿命。同时,飞秒瞬态吸收(fs-TA)表明,四面体多阳离子结构的形成有利于分子激发态的快速生成,并延长了电荷分离态的持续时间。由于其显著特点,POP-SeV 被用作光催化剂,用于可见光诱导的交叉脱氢偶联(CDC)反应,收率高达 82%。此外,该催化剂的用途还进一步扩展到制氢领域,并取得了显著的成果,例如高制氢率(300 μmol-h-g)和表观量子产率(0.13%)。值得注意的是,POP-SeV 在光催化过程中表现出极高的稳定性和可重复使用性,这使其有别于那些可溶性 SeV 基光催化剂。这不仅首次实现了 SeV 基体系的完全异相光催化,而且为提高紫胶衍生物在太阳能转化和利用中的应用效果提供了新的策略。
{"title":"Porous polyselenoviologen with long-lived charge separated states and highly cyclic stability for heterogeneous photocatalytic reaction and hydrogen production","authors":"Yujing Gao, Qi Sun, Chenjing Liu, Yawen Li, Sikun Zhang, Guoping Li, Gang He","doi":"10.1016/j.apcatb.2024.124537","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124537","url":null,"abstract":"A highly stable heterogeneous photocatalyst, porous polyselenoviologen (POP-SeV), was successfully synthesized via S2 reaction. Compared to the monomer, POP-SeV exhibited strong visible-light absorption, enhanced electron acceptor property, and prolonged lifetime of radical cations. Simultaneously, the femtosecond transient absorption (fs-TA) illustrated that the formation of tetrahedral multi-cationic structure is conducive to the rapid generation of molecular excited states and extending the duration of charge-separated states. Due to its remarkable characteristics, the POP-SeV was employed as a photocatalyst for visible-light-induced cross-dehydrogenative coupling (CDC) reactions with a highly efficient yield (82 %). Additionally, its utilization was further extended to the hydrogen generation, demonstrating remarkable outcomes such as a high rate of H generation (300 μmol·h·g), and an apparent quantum yield (0.13 %). Notably, POP-SeV displayed great stability and reusability in the photocatalytic process, which can distinguish it from those soluble SeV-based photocatalysts. The catalytic efficiency of POP-SeV remained virtually unaffected even after undergoing several recycling cycles, which not only achieved the complete heterogeneous photocatalysis of SeV-based systems for the first time but also provided a new strategy to improve the application effect of viologen derivatives in solar energy conversion and utilization.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MOF derived hierarchical α-Bi2O3-BiVO4-CuFe2O4 multijunction heterostructure with conjugated S-scheme charge mobilization: Photocatalytic decontamination study, toxicity assessment and mechanistic elucidation 具有共轭 S 型电荷调动功能的 MOF 衍生分层 α-Bi2O3-BiVO4-CuFe2O4 多结异质结构:光催化去污研究、毒性评估和机理阐明
Pub Date : 2024-08-26 DOI: 10.1016/j.apcatb.2024.124534
Swagat Kumar Nayak, Sibun Kumar Pradhan, Saumyaranjan Panda, Ranjit Bariki, B.G. Mishra
A series of hierarchical α-BiO-BiVO-CuFeO multijunction heterostructure was designed by integrating one-pot MOF derived BiO-BiVO microrods with CuFeO nanosheets. The MOF-derived route afforded BiO-BiVO with interconnecting porous architecture. Comprehensive investigations revealed preservation of crystalline phases, optimal light harvesting ability, higher lifetime, large electrochemically active surface area and improved charge dynamics. The heterostructure efficiently performed the photo-degradation of potentially toxic and mutagenic mesotrione (MTE) herbicide with rates 6–12 times greater than the parent semiconductors. The photo-degraded end products displayed profoundly less acute toxicity, bioaccumulation factor and mutagenic nature than parent MTE as analyzed by QSAR protocol. The heterostructure was equally effective for complete photo-inactivation of bacteria within 60 min of irradiation. SEM, AFM height profile and confocal microscopic investigation provided crucial information about the photo-inactivation process. A conjugated S-scheme electron transfer mechanism was proposed based on detailed band structure analysis to elucidate the improved activity of the multijunction photocatalyst.
通过将一键式 MOF 衍生的 BiO-BiVO 微晶块与铜氧化铁纳米片整合在一起,设计出了一系列分层的 α-BiO-BiVO-CuFeO 多结异质结构。通过 MOF 衍生途径,BiO-BiVO 获得了相互连接的多孔结构。综合研究表明,该材料保留了结晶相,具有最佳的光收集能力、更长的使用寿命、较大的电化学活性表面积和更好的电荷动力学特性。这种异质结构能有效地光降解具有潜在毒性和致突变性的间苯三酚(MTE)除草剂,降解率是母体半导体的 6-12 倍。根据 QSAR 方案分析,光降解的最终产物在急性毒性、生物累积因子和致突变性方面均大大低于母体 MTE。在 60 分钟的照射时间内,异质结构对细菌的完全光灭活同样有效。扫描电子显微镜(SEM)、原子力显微镜(AFM)高度剖面和共聚焦显微镜研究提供了有关光灭活过程的重要信息。根据详细的能带结构分析,提出了共轭 S 型电子传递机制,从而阐明了多接面光催化剂活性的提高。
{"title":"MOF derived hierarchical α-Bi2O3-BiVO4-CuFe2O4 multijunction heterostructure with conjugated S-scheme charge mobilization: Photocatalytic decontamination study, toxicity assessment and mechanistic elucidation","authors":"Swagat Kumar Nayak, Sibun Kumar Pradhan, Saumyaranjan Panda, Ranjit Bariki, B.G. Mishra","doi":"10.1016/j.apcatb.2024.124534","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124534","url":null,"abstract":"A series of hierarchical α-BiO-BiVO-CuFeO multijunction heterostructure was designed by integrating one-pot MOF derived BiO-BiVO microrods with CuFeO nanosheets. The MOF-derived route afforded BiO-BiVO with interconnecting porous architecture. Comprehensive investigations revealed preservation of crystalline phases, optimal light harvesting ability, higher lifetime, large electrochemically active surface area and improved charge dynamics. The heterostructure efficiently performed the photo-degradation of potentially toxic and mutagenic mesotrione (MTE) herbicide with rates 6–12 times greater than the parent semiconductors. The photo-degraded end products displayed profoundly less acute toxicity, bioaccumulation factor and mutagenic nature than parent MTE as analyzed by QSAR protocol. The heterostructure was equally effective for complete photo-inactivation of bacteria within 60 min of irradiation. SEM, AFM height profile and confocal microscopic investigation provided crucial information about the photo-inactivation process. A conjugated S-scheme electron transfer mechanism was proposed based on detailed band structure analysis to elucidate the improved activity of the multijunction photocatalyst.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FeSeS@C cage-in-cage superlattices for peroxymonosulfate activation: Surface acidity regulates Fe spin state 用于过氧化单硫酸盐活化的笼中笼超晶格 FeSeS@C:表面酸度调节铁的自旋态
Pub Date : 2024-08-26 DOI: 10.1016/j.apcatb.2024.124539
Qiang Zhong, Yan Xue, Zihao Qi, Yue Sun, Leliang Wu, Dunyu Sun, Chenmin Xu, Kwangchol Ri, Shaogui Yang, Jiandong Zhu, Qiuyi Ji, Yazi Liu, Shiyin Li, Huan He
Two-dimensional cage-in-cage carbon-coated FeSeS superlattices with varying degrees of sulfidation (FeSeS@C) are developed for activating peroxymonosulfate (PMS) to effectively degrade diatrizoic acid (DTZ), and the intrinsic origin that govern the activity of FeSeS@C are deeply elucidated. Experimental and theoretical analyses manifested that proper sulfidation led to increased surface acidity of FeSeS@C. The high surface acidity can optimize the exposure and spin state of Fe sites for FeSeS@C-4, a high spin state of Fe (6.27 μ) not only regulating PMS adsorption for enhancing the charge density, but also expediting interfacial charge deliver to trigger the efficient PMS activation. Therefore, among FeSeS@C, FeSeS@C-4 exhibited the best degradation performance for DTZ, with first-order kinetic rate constants (k) of 0.232 min and degradation rate of 100 %. This study demonstrates a novel application of cage-in-cage superlattices in environmental remediation and offers new insights into the mechanism of PMS activation by sulfur modification Fe-based catalysts.
实验和理论分析表明,适当的硫化可提高 FeSeS@C 的表面酸度。高表面酸度可以优化 FeSeS@C-4 的铁位点暴露和自旋态,高自旋态的铁位点(6.27 μ)不仅可以调节 PMS 的吸附以提高电荷密度,还可以加速界面电荷的传递,从而引发 PMS 的高效活化。因此,在 FeSeS@C 中,FeSeS@C-4 对 DTZ 的降解性能最好,一阶动力学速率常数(k)为 0.232 分钟,降解率为 100%。这项研究展示了笼中笼超晶格在环境修复中的新应用,并为硫改性铁基催化剂活化 PMS 的机理提供了新的见解。
{"title":"FeSeS@C cage-in-cage superlattices for peroxymonosulfate activation: Surface acidity regulates Fe spin state","authors":"Qiang Zhong, Yan Xue, Zihao Qi, Yue Sun, Leliang Wu, Dunyu Sun, Chenmin Xu, Kwangchol Ri, Shaogui Yang, Jiandong Zhu, Qiuyi Ji, Yazi Liu, Shiyin Li, Huan He","doi":"10.1016/j.apcatb.2024.124539","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124539","url":null,"abstract":"Two-dimensional cage-in-cage carbon-coated FeSeS superlattices with varying degrees of sulfidation (FeSeS@C) are developed for activating peroxymonosulfate (PMS) to effectively degrade diatrizoic acid (DTZ), and the intrinsic origin that govern the activity of FeSeS@C are deeply elucidated. Experimental and theoretical analyses manifested that proper sulfidation led to increased surface acidity of FeSeS@C. The high surface acidity can optimize the exposure and spin state of Fe sites for FeSeS@C-4, a high spin state of Fe (6.27 μ) not only regulating PMS adsorption for enhancing the charge density, but also expediting interfacial charge deliver to trigger the efficient PMS activation. Therefore, among FeSeS@C, FeSeS@C-4 exhibited the best degradation performance for DTZ, with first-order kinetic rate constants (k) of 0.232 min and degradation rate of 100 %. This study demonstrates a novel application of cage-in-cage superlattices in environmental remediation and offers new insights into the mechanism of PMS activation by sulfur modification Fe-based catalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting metal oxides–zeolite electron interaction on MnCeOx/HY catalyst for boosting nitrogen oxides reduction 在 MnCeOx/HY 催化剂上促进金属氧化物与沸石的电子相互作用,以提高氮氧化物还原能力
Pub Date : 2024-08-26 DOI: 10.1016/j.apcatb.2024.124535
Yonglong Li, Guobo Li, Hao Li, Wenming Liu, Jian Ji, Shengyong Lu, Zhenguo Li, Honggen Peng
The MnO-CeO metal oxides are considered as promising alternative catalysts for selective catalytic reduction with NH (NH-SCR) to remove NO due to its excellent low temperature performance. However, their strong oxidative ability can lead to NH over-oxidation, narrowing the active temperature range and reducing N selectivity. Moreover, their weak surface acidity hampers medium to high-temperature activity and alkali metal resistance. Hence, in this study, MnCeO metal oxides were coupled with HY zeolite to create MnCeO/HY, demonstrating excellent NH-SCR performance. The high dispersion of metal oxides on the zeolite surface and their close integration promoted strong electron interaction, effectively reducing oxygen vacancies and surface adsorbed oxygen concentrations. Consequently, the oxidative ability of active metal oxides was appropriately weakened, suppressing undesirable side reactions. MnCeO/HY also notably suppressed NO adsorption and nitrate formation, promoting the catalytic reaction solely through the E-R mechanism and enhancing N selectivity. The abundant strong acid sites on the zeolite surface facilitates NH adsorption at moderate to high temperatures, notably expanding the active temperature window. Furthermore, the acid sites of HY zeolite serve as sacrificial sites, preferentially reacting with alkali metals, thus exhibiting excellent resistance to alkali metal poisoning on MnCeO/HY. Combining with the DFT results, the structure-activity relationships in this study also reveal the importance of the effective synergy between acid sites and redox sites for optimal catalytic performance, offering valuable insights into the development of highly active and alkali-resistant denitrification catalysts.
由于 MnO-CeO 金属氧化物具有出色的低温性能,因此被认为是 NH 选择性催化还原(NH-SCR)去除 NO 的理想替代催化剂。然而,它们的强氧化能力会导致 NH 过度氧化,从而缩小活性温度范围并降低 N 的选择性。此外,它们的弱表面酸性也会影响中高温活性和耐碱金属性。因此,在本研究中,将 MnCeO 金属氧化物与 HY 沸石耦合,生成了 MnCeO/HY,显示出优异的 NH-SCR 性能。金属氧化物在沸石表面的高度分散和紧密结合促进了强烈的电子相互作用,有效降低了氧空位和表面吸附氧浓度。因此,活性金属氧化物的氧化能力被适当削弱,抑制了不良的副反应。MnCeO/HY 还显著抑制了 NO 的吸附和硝酸盐的形成,促进了仅通过 E-R 机制进行的催化反应,提高了 N 的选择性。沸石表面丰富的强酸位点促进了 NH 在中高温下的吸附,显著扩大了活性温度窗口。此外,HY 沸石的酸性位点可作为牺牲位点,优先与碱金属发生反应,从而在 MnCeO/HY 上表现出优异的抗碱金属中毒能力。结合 DFT 结果,本研究中的结构-活性关系还揭示了酸性位点和氧化还原位点之间的有效协同作用对实现最佳催化性能的重要性,为开发高活性、耐碱的脱硝催化剂提供了宝贵的启示。
{"title":"Promoting metal oxides–zeolite electron interaction on MnCeOx/HY catalyst for boosting nitrogen oxides reduction","authors":"Yonglong Li, Guobo Li, Hao Li, Wenming Liu, Jian Ji, Shengyong Lu, Zhenguo Li, Honggen Peng","doi":"10.1016/j.apcatb.2024.124535","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124535","url":null,"abstract":"The MnO-CeO metal oxides are considered as promising alternative catalysts for selective catalytic reduction with NH (NH-SCR) to remove NO due to its excellent low temperature performance. However, their strong oxidative ability can lead to NH over-oxidation, narrowing the active temperature range and reducing N selectivity. Moreover, their weak surface acidity hampers medium to high-temperature activity and alkali metal resistance. Hence, in this study, MnCeO metal oxides were coupled with HY zeolite to create MnCeO/HY, demonstrating excellent NH-SCR performance. The high dispersion of metal oxides on the zeolite surface and their close integration promoted strong electron interaction, effectively reducing oxygen vacancies and surface adsorbed oxygen concentrations. Consequently, the oxidative ability of active metal oxides was appropriately weakened, suppressing undesirable side reactions. MnCeO/HY also notably suppressed NO adsorption and nitrate formation, promoting the catalytic reaction solely through the E-R mechanism and enhancing N selectivity. The abundant strong acid sites on the zeolite surface facilitates NH adsorption at moderate to high temperatures, notably expanding the active temperature window. Furthermore, the acid sites of HY zeolite serve as sacrificial sites, preferentially reacting with alkali metals, thus exhibiting excellent resistance to alkali metal poisoning on MnCeO/HY. Combining with the DFT results, the structure-activity relationships in this study also reveal the importance of the effective synergy between acid sites and redox sites for optimal catalytic performance, offering valuable insights into the development of highly active and alkali-resistant denitrification catalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A universal molecular oxygen-mediated photocatalysis strategy to boost visible-light induced hydrogen evolution through partial water splitting 以分子氧为媒介的通用光催化策略,通过部分水分裂促进可见光诱导的氢进化
Pub Date : 2024-08-26 DOI: 10.1016/j.apcatb.2024.124536
Nan Lu, Xiaoqing Yan, Biling Wu, Hisayoshi Kobayashi, Renhong Li
A universal oxygen-mediated, stepwise strategy is proposed for efficiently inducing visible-light photocatalytic partial water decomposition into hydrogen over various semiconductor photocatalysts with conduction band bottoms below the single-electron oxygen reduction potential. In this scenario, molecular O can be transformed into reactive oxygen species, serving as both an oxidant and a homogeneous catalyst for producing hydrogen from alkaline aqueous solution containing various organic substrates. Further enhancement the performance is achieved by doping with phosphorous and oxygen, which constructs a local internal electric field and introduces sulfur vacancies, thereby facilitating the transport of photogenerated charge carriers, particularly on a representative CdS photocatalyst. The optimal hydrogen evolution performance reaches 2321.4 and 8521.4 μmol·g·h in methanol and formaldehyde solution systems, respectively, with an apparent quantum efficiency exceeding 59.4 % under 450 nm visible light irradiation. Mechanistic studies demonstrate that the oxygen-mediated, sequential single-electron transfer process can occur with virtually zero activation energy.
本文提出了一种以氧为媒介的通用分步策略,可在导带底低于单电子氧还原电位的各种半导体光催化剂上有效地诱导可见光光催化部分水分解成氢。在这种情况下,分子 O 可以转化为活性氧,既可作为氧化剂,也可作为均相催化剂,从含有各种有机基质的碱性水溶液中产生氢气。通过掺杂磷和氧,可以构建局部内电场并引入硫空位,从而促进光生电荷载流子的传输,特别是在具有代表性的 CdS 光催化剂上,从而进一步提高性能。在 450 纳米可见光照射下,该催化剂在甲醇和甲醛溶液体系中的最佳氢气进化性能分别达到 2321.4 和 8521.4 μmol-g-h,表观量子效率超过 59.4%。机理研究表明,氧介导的顺序单电子转移过程可以在活化能几乎为零的情况下发生。
{"title":"A universal molecular oxygen-mediated photocatalysis strategy to boost visible-light induced hydrogen evolution through partial water splitting","authors":"Nan Lu, Xiaoqing Yan, Biling Wu, Hisayoshi Kobayashi, Renhong Li","doi":"10.1016/j.apcatb.2024.124536","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124536","url":null,"abstract":"A universal oxygen-mediated, stepwise strategy is proposed for efficiently inducing visible-light photocatalytic partial water decomposition into hydrogen over various semiconductor photocatalysts with conduction band bottoms below the single-electron oxygen reduction potential. In this scenario, molecular O can be transformed into reactive oxygen species, serving as both an oxidant and a homogeneous catalyst for producing hydrogen from alkaline aqueous solution containing various organic substrates. Further enhancement the performance is achieved by doping with phosphorous and oxygen, which constructs a local internal electric field and introduces sulfur vacancies, thereby facilitating the transport of photogenerated charge carriers, particularly on a representative CdS photocatalyst. The optimal hydrogen evolution performance reaches 2321.4 and 8521.4 μmol·g·h in methanol and formaldehyde solution systems, respectively, with an apparent quantum efficiency exceeding 59.4 % under 450 nm visible light irradiation. Mechanistic studies demonstrate that the oxygen-mediated, sequential single-electron transfer process can occur with virtually zero activation energy.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of phosphorus-doped Cu-based catalysts by electrodeposition modulates *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4 通过电沉积制备掺磷铜基催化剂,调节 *CHxO 的吸附,促进 CO2 到 CH4 的电催化还原
Pub Date : 2024-08-25 DOI: 10.1016/j.apcatb.2024.124525
Zhishuncheng Li, Yongheng Yuan, Guangfei Qu, Keyi Xiang, Ping Ning, Wanyuan Du, Keheng Pan, Yingying Cai, Junyan Li
Catalysts for the generation of methane in electrochemical CO reduction reactions (CORR) must have suitable adsorption energies for the intermediate products. In this study, we used a one-step electrodeposition method to prepare nitrogen(N) and phosphorus(P)-doped copper(Cu)-based catalysts. The introduction of P to the catalyst resulted in a significant change in the CORR pathway, leading to efficient and highly selective methane production. The Cu-N-P electrocatalyst exhibits a CH Faradaic efficiency (FE) of 73 % at a potential of −1.6 V vs RHE, and it was found to be more effective in promoting the hydrogenation process of *CHO-*CHO-*CHO, which was confirmed by in-situ IR, X-ray absorption techniques and DFT calculations. P serves as the primary electron donation site in the catalyst, thereby influencing the charge distribution properties of the surrounding Cu atoms. This, in turn, facilitates the regulation of intermediate adsorption, representing the primary factor in the notable enhancement of methane selectivity.
在电化学一氧化碳还原反应(CORR)中生成甲烷的催化剂必须对中间产物具有合适的吸附能。在本研究中,我们采用一步电沉积法制备了掺氮(N)和掺磷(P)的铜(Cu)基催化剂。在催化剂中引入磷后,CORR 途径发生了显著变化,从而实现了高效、高选择性的甲烷生产。Cu-N-P 电催化剂在电位为 -1.6 V 对 RHE 时的 CH 法拉第效率 (FE) 为 73%,而且它在促进 *CHO-*CHO-*CHO 的氢化过程中更为有效,这一点已通过原位红外、X 射线吸收技术和 DFT 计算得到证实。P 在催化剂中作为主要的电子捐献位点,从而影响了周围铜原子的电荷分布特性。这反过来又促进了中间体吸附的调节,是显著提高甲烷选择性的主要因素。
{"title":"Preparation of phosphorus-doped Cu-based catalysts by electrodeposition modulates *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4","authors":"Zhishuncheng Li, Yongheng Yuan, Guangfei Qu, Keyi Xiang, Ping Ning, Wanyuan Du, Keheng Pan, Yingying Cai, Junyan Li","doi":"10.1016/j.apcatb.2024.124525","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124525","url":null,"abstract":"Catalysts for the generation of methane in electrochemical CO reduction reactions (CORR) must have suitable adsorption energies for the intermediate products. In this study, we used a one-step electrodeposition method to prepare nitrogen(N) and phosphorus(P)-doped copper(Cu)-based catalysts. The introduction of P to the catalyst resulted in a significant change in the CORR pathway, leading to efficient and highly selective methane production. The Cu-N-P electrocatalyst exhibits a CH Faradaic efficiency (FE) of 73 % at a potential of −1.6 V vs RHE, and it was found to be more effective in promoting the hydrogenation process of *CHO-*CHO-*CHO, which was confirmed by in-situ IR, X-ray absorption techniques and DFT calculations. P serves as the primary electron donation site in the catalyst, thereby influencing the charge distribution properties of the surrounding Cu atoms. This, in turn, facilitates the regulation of intermediate adsorption, representing the primary factor in the notable enhancement of methane selectivity.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting photocatalytic multi-VOCs decontamination over COF-based heterojunction via targeted construction of Ov–M–N charge channel (M = Ti, Zn, W, Ce) and –NH2 functionalization 通过有针对性地构建 Ov-M-N 电荷通道(M = Ti、Zn、W、Ce)和 -NH2 功能化,在 COF 基异质结上提高光催化净化多种挥发性有机化合物的能力
Pub Date : 2024-08-25 DOI: 10.1016/j.apcatb.2024.124532
Zhao Hu, Yan Wang, Yujiao Zhang, Hongguo Wu, Wen-Da Oh, Hu Li, Chao He
Covalent organic frameworks (COF) based materials have exhibited excellent gas and visible light absorption capability, yet are very difficult to generate strong oxidative species for photocatalytic mineralization of volatile organic compounds (VOCs). Here, a facile modulation protocol developed could enable the growth of MO (M = Ti, Zn, W, Ce) with oxygen vacancy (Ov) on –NH-functionalized COF surfaces to construct NH–COF/Ov–MO Z–scheme heterojunctions of excellent stability and efficiency (98.3 %) in photo-oxidation of formaldehyde, acetaldehyde, and acetone. The –NH functionalization enhanced VOC chemisorption via H-bond interaction. Moreover, the constructed fast charge transfer channel (Ov–M–N) at the interface not only promoted directional migration of photo-excited carrier, activated adsorbed O and HO to quickly generate strong •OH, but also effectively inhibited injurant formation to realize the precise control of the conversion path. These findings offer new insights into customizing the interfacial structure of COF for indoor air purification.
基于共价有机框架(COF)的材料具有出色的气体和可见光吸收能力,但却很难产生强氧化性物种用于挥发性有机化合物(VOC)的光催化矿化。在此,我们开发了一种简便的调制方案,可使带有氧空位(Ov)的 MO(M = Ti、Zn、W、Ce)在-NH 功能化的 COF 表面生长,从而构建出 NH-COF/Ov-MO Z 型异质结,在甲醛、乙醛和丙酮的光氧化过程中具有出色的稳定性和效率(98.3%)。通过 H 键相互作用,-NH 官能化增强了挥发性有机化合物的化学吸附。此外,界面上构建的快速电荷转移通道(Ov-M-N)不仅促进了光激发载流子的定向迁移,激活吸附的 O 和 HO 快速生成强 -OH,还有效抑制了损伤剂的形成,实现了转化路径的精确控制。这些发现为定制 COF 的界面结构以净化室内空气提供了新的思路。
{"title":"Boosting photocatalytic multi-VOCs decontamination over COF-based heterojunction via targeted construction of Ov–M–N charge channel (M = Ti, Zn, W, Ce) and –NH2 functionalization","authors":"Zhao Hu, Yan Wang, Yujiao Zhang, Hongguo Wu, Wen-Da Oh, Hu Li, Chao He","doi":"10.1016/j.apcatb.2024.124532","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124532","url":null,"abstract":"Covalent organic frameworks (COF) based materials have exhibited excellent gas and visible light absorption capability, yet are very difficult to generate strong oxidative species for photocatalytic mineralization of volatile organic compounds (VOCs). Here, a facile modulation protocol developed could enable the growth of MO (M = Ti, Zn, W, Ce) with oxygen vacancy (Ov) on –NH-functionalized COF surfaces to construct NH–COF/Ov–MO Z–scheme heterojunctions of excellent stability and efficiency (98.3 %) in photo-oxidation of formaldehyde, acetaldehyde, and acetone. The –NH functionalization enhanced VOC chemisorption via H-bond interaction. Moreover, the constructed fast charge transfer channel (Ov–M–N) at the interface not only promoted directional migration of photo-excited carrier, activated adsorbed O and HO to quickly generate strong •OH, but also effectively inhibited injurant formation to realize the precise control of the conversion path. These findings offer new insights into customizing the interfacial structure of COF for indoor air purification.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schottky heterojunction-based photocatalysis-in-situ-self-Fenton system: Removal of tetracycline hydrochloride and biotoxicity evaluation of intermediates 基于肖特基异质结的原位自芬顿光催化系统:盐酸四环素的去除和中间产物的生物毒性评估
Pub Date : 2024-08-25 DOI: 10.1016/j.apcatb.2024.124533
Qiang Li, Qi Zhou, Hao Deng, Zhiheng Li, Biao Xue, Aoxiang Liu, Bo Shen, Derek Hao, Huayue Zhu, Qi Wang
Efficiently removing tetracycline hydrochloride (TC) while minimizing the formation of toxic intermediates is a significant challenge. A novel photocatalysis-in-situ-self-Fenton catalyst, RF/EA-Fe@TiC, removed 92 % of TC (20 mg L, 100 mL) under visible light irradiation within 80 min. The results of optical thickness and local volumetric rate of photon absorption demonstrated that RF/EA-Fe@TiC had superior light capture ability than that of RF/EA-Fe. TC significantly inhibited wheat seed germination, seedling growth, and chlorophyll and carotenoid generation, whereas its intermediates had a lesser effect. Additionally, TC damaged the photosystem II (PSII) of wheat seedlings, reducing light response ability and energy capture efficiency, while TC intermediates caused damage similar to deionized water. The rapid TC degradation and low-ecotoxic intermediates stem from the synergistic effects between photogenerated holes and hydroxyl radicals. This study advanced the design of photocatalysis-in-situ-self-Fenton systems for antibiotic degradation and detoxification.
高效去除盐酸四环素(TC),同时尽量减少有毒中间产物的形成是一项重大挑战。新型光催化原位自芬顿催化剂 RF/EA-Fe@TiC 在可见光照射下,80 分钟内去除 92% 的 TC(20 mg L,100 mL)。光学厚度和光子吸收局部体积率的结果表明,RF/EA-Fe@TiC 的光捕获能力优于 RF/EA-Fe。三氯乙酸对小麦种子萌发、幼苗生长、叶绿素和类胡萝卜素的生成有明显的抑制作用,而其中间产物的影响较小。此外,TC 还会损害小麦幼苗的光系统 II(PSII),降低光响应能力和能量捕获效率,而 TC 中间体造成的损害与去离子水相似。TC 的快速降解和低生态毒性中间产物源于光生空穴和羟基自由基之间的协同效应。这项研究推动了用于抗生素降解和解毒的光催化原位自芬顿系统的设计。
{"title":"Schottky heterojunction-based photocatalysis-in-situ-self-Fenton system: Removal of tetracycline hydrochloride and biotoxicity evaluation of intermediates","authors":"Qiang Li, Qi Zhou, Hao Deng, Zhiheng Li, Biao Xue, Aoxiang Liu, Bo Shen, Derek Hao, Huayue Zhu, Qi Wang","doi":"10.1016/j.apcatb.2024.124533","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124533","url":null,"abstract":"Efficiently removing tetracycline hydrochloride (TC) while minimizing the formation of toxic intermediates is a significant challenge. A novel photocatalysis-in-situ-self-Fenton catalyst, RF/EA-Fe@TiC, removed 92 % of TC (20 mg L, 100 mL) under visible light irradiation within 80 min. The results of optical thickness and local volumetric rate of photon absorption demonstrated that RF/EA-Fe@TiC had superior light capture ability than that of RF/EA-Fe. TC significantly inhibited wheat seed germination, seedling growth, and chlorophyll and carotenoid generation, whereas its intermediates had a lesser effect. Additionally, TC damaged the photosystem II (PSII) of wheat seedlings, reducing light response ability and energy capture efficiency, while TC intermediates caused damage similar to deionized water. The rapid TC degradation and low-ecotoxic intermediates stem from the synergistic effects between photogenerated holes and hydroxyl radicals. This study advanced the design of photocatalysis-in-situ-self-Fenton systems for antibiotic degradation and detoxification.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Catalysis B: Environment and Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1