Manganese oxide species have been frequently used for Fenton catalyst design, but their role in reaction with hydrogen peroxide (HO) is still in debate. We here revealed the different routes of manganese oxide/HO interactions occurring at bulk surfaces to that at nanopore-confined surfaces, which have been overlooked in literatures. Briefly, particulate manganese oxide species cause a fast HO decomposition influenced by the valence of manganese and solution pH, but without generation of reactive oxygen species (OH, O, or O) for water treatment; in contrast, manganese oxide/HO interaction under nanopore confinement ( 1 nm) led to the production of radicals (mainly OH and O) and the removal of organic pollutants. We gained insights into the differed reaction routes based on experimental and computational study. Our findings provide caveats on the indiscriminate pursuit of manganese in Fenton catalyst development, against a nullified HO decomposition and impractically slow radical production.
氧化锰物种经常被用于芬顿催化剂的设计,但它们在与过氧化氢(HO)反应中的作用仍存在争议。我们在此揭示了氧化锰/过氧化氢在大块表面与纳米孔封闭表面发生相互作用的不同途径,而这一点在文献中一直被忽视。简而言之,颗粒状氧化锰受锰的价数和溶液pH值的影响会导致HO快速分解,但不会产生用于水处理的活性氧(OH、O或O);相反,纳米孔(1 nm)中氧化锰/HO的相互作用会产生自由基(主要是OH和O)并去除有机污染物。我们通过实验和计算研究深入了解了不同的反应路线。我们的研究结果提醒人们在开发芬顿催化剂时不要一味追求锰,以免造成 HO 分解失效和自由基生成缓慢。
{"title":"Manganese oxide for heterogeneous Fenton treatment: Catalyst or inhibitor?","authors":"Jianfeng Zheng, Hyun Jeong Lim, Tayler Hedtke, Jae-Hong Kim, Shuo Zhang","doi":"10.1016/j.apcatb.2024.124531","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124531","url":null,"abstract":"Manganese oxide species have been frequently used for Fenton catalyst design, but their role in reaction with hydrogen peroxide (HO) is still in debate. We here revealed the different routes of manganese oxide/HO interactions occurring at bulk surfaces to that at nanopore-confined surfaces, which have been overlooked in literatures. Briefly, particulate manganese oxide species cause a fast HO decomposition influenced by the valence of manganese and solution pH, but without generation of reactive oxygen species (OH, O, or O) for water treatment; in contrast, manganese oxide/HO interaction under nanopore confinement ( 1 nm) led to the production of radicals (mainly OH and O) and the removal of organic pollutants. We gained insights into the differed reaction routes based on experimental and computational study. Our findings provide caveats on the indiscriminate pursuit of manganese in Fenton catalyst development, against a nullified HO decomposition and impractically slow radical production.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.apcatb.2024.124489
Lulu Li, Bing Nan, Neng Neng Xu, Ge Bai, Ruinan He, Yuyu Liu, Jinli Qiao
Exploiting suitable photocathodes to achieve high photocurrent and long-term endurance is still a great challenge in photoelectrocatalytic CO reduction (PEC CO) reactions. Herein, an In-doped BiO decorated oxidized copper foam (CBIO/CF) self-standing photoelectric cathode is well designed by the self-assembly process without an externally added binder. Via sunlight-promoted strategy, CBIO/CF with a unique 3D hierarchical nanoflower structure displays a superior faradaic efficiency of 90.0 % towards HCOOH over a wide potential window from −0.87 ∼ −1.17 V and reaches 97.8 % at −0.87 V with a partial current density of 14.41 mA cm. The in-situ Fourier transform infrared spectroscopy (FTIR) analysis demonstrates the abundant oxygen defects induced by In doping boost CBIO/CF absorbing substantive intermediate species related with formate generations, and porous structure accelerating mass transportation. Moreover, the well-designed staggered p-n heterojunctions of CuO and In-doped BiO on the surface of catalysts favor the generation and separation of electron/hole pairs and contribute to the photocatalytic reduction of CO under a bias voltage. This work paves the way for rational regulation of self-supporting photoelectrode for PEC CO to HCOOH with suitable conduction band valence bands and high performance and stability.
在光电催化一氧化碳还原(PEC CO)反应中,开发合适的光电阴极以实现高光电流和长期耐久性仍然是一个巨大的挑战。本文通过自组装工艺设计了一种掺杂 In 的生物氧化物装饰氧化泡沫铜(CBIO/CF)自立光电阴极,无需外部添加粘合剂。通过太阳光促进策略,具有独特三维分层纳米花结构的 CBIO/CF 在 -0.87 ∼ -1.17 V 的宽电位窗口内对 HCOOH 显示出 90.0 % 的卓越远电效率,在 -0.87 V 时达到 97.8 %,部分电流密度为 14.41 mA cm。原位傅立叶变换红外光谱(FTIR)分析表明,掺杂 In 引发的大量氧缺陷促进了 CBIO/CF 吸收与甲酸盐生成有关的实质性中间物种,而多孔结构则加速了质量传输。此外,催化剂表面精心设计的 CuO 和 In 掺杂的 BiO 交错 p-n 异质结有利于电子/空穴对的产生和分离,有助于在偏置电压下光催化还原 CO。这项工作为合理调节 PEC CO 到 HCOOH 的自支撑光电极,使其具有合适的导带价带、高性能和高稳定性铺平了道路。
{"title":"Sunlight-promoted CO2 electroreduction with staggered p-n heterojunction by indium-doped bismuth 3D nanoflower structure on oxidized copper foam as self-standing photoelectric cathode over a wide potential window","authors":"Lulu Li, Bing Nan, Neng Neng Xu, Ge Bai, Ruinan He, Yuyu Liu, Jinli Qiao","doi":"10.1016/j.apcatb.2024.124489","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124489","url":null,"abstract":"Exploiting suitable photocathodes to achieve high photocurrent and long-term endurance is still a great challenge in photoelectrocatalytic CO reduction (PEC CO) reactions. Herein, an In-doped BiO decorated oxidized copper foam (CBIO/CF) self-standing photoelectric cathode is well designed by the self-assembly process without an externally added binder. Via sunlight-promoted strategy, CBIO/CF with a unique 3D hierarchical nanoflower structure displays a superior faradaic efficiency of 90.0 % towards HCOOH over a wide potential window from −0.87 ∼ −1.17 V and reaches 97.8 % at −0.87 V with a partial current density of 14.41 mA cm. The in-situ Fourier transform infrared spectroscopy (FTIR) analysis demonstrates the abundant oxygen defects induced by In doping boost CBIO/CF absorbing substantive intermediate species related with formate generations, and porous structure accelerating mass transportation. Moreover, the well-designed staggered p-n heterojunctions of CuO and In-doped BiO on the surface of catalysts favor the generation and separation of electron/hole pairs and contribute to the photocatalytic reduction of CO under a bias voltage. This work paves the way for rational regulation of self-supporting photoelectrode for PEC CO to HCOOH with suitable conduction band valence bands and high performance and stability.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kinetically sluggish ammonia oxidation and interference of H competing with NH active sites will suppress the output performance of direct ammonia solid oxide fuel cell (DA-SOFC). Herein, we select Zn doped into PrNiO as precursor of PrNiZnO (PNZx) that can be destroyed and converted into PrO together with in-situ Ni reduction, realizing the redistribution of elements in reduction atmosphere. Meanwhile, the foreign Zn as a low-valent element is retained in PrO lattice due to the high segregation Gibbs free energy to form Ni/PrZnO, which aggravates the change of Pr and Pr, thus enhancing the oxygen vacancy concentration. The Zn promotes the reduction of Ni and quenches the adsorption capacity of H, alleviating the “hydrogen poisoning” behavior. As a result, the maximum powder density of single cell based on PNZ0.1 supported by YSZ electrolyte is 134 mW·cm at 800 ℃, which is more than twice higher than that of Ni/YSZ. Various characterizations reveal that the NH reaction path is the synergistic occurrence of ammonia decomposition and ammonia oxidation.
氨氧化动力学缓慢以及 H 与 NH 活性位点竞争的干扰会抑制直接氨固体氧化物燃料电池(DA-SOFC)的输出性能。在此,我们选择在 PrNiO 中掺入 Zn 作为 PrNiZnO(PNZx)的前驱体,该前驱体可在原位还原 Ni 的同时被破坏并转化为 PrO,实现还原气氛中元素的再分配。同时,外来的 Zn 作为一种低价元素,由于偏析吉布斯自由能较高而被保留在 PrO 晶格中,形成 Ni/PrZnO,加剧了 Pr 和 Pr 的变化,从而提高了氧空位浓度。Zn 促进了 Ni 的还原,淬灭了 H 的吸附能力,减轻了 "氢中毒 "行为。因此,基于 PNZ0.1 并由 YSZ 电解质支撑的单电池在 800 ℃ 时的最大粉末密度为 134 mW-cm,比 Ni/YSZ 高出两倍多。各种表征显示,NH 反应路径是氨分解和氨氧化的协同作用。
{"title":"Unveiling optimal activity and mechanism of in situ Ni reduction Pr2Ni1-xZnxO4 anode for ammonia solid oxide fuel cells","authors":"Fulan Zhong, Xiaofeng Zhao, Huihuang Fang, Yu Luo, Shaorong Wang, Chongqi Chen, Lilong Jiang","doi":"10.1016/j.apcatb.2024.124522","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124522","url":null,"abstract":"Kinetically sluggish ammonia oxidation and interference of H competing with NH active sites will suppress the output performance of direct ammonia solid oxide fuel cell (DA-SOFC). Herein, we select Zn doped into PrNiO as precursor of PrNiZnO (PNZx) that can be destroyed and converted into PrO together with in-situ Ni reduction, realizing the redistribution of elements in reduction atmosphere. Meanwhile, the foreign Zn as a low-valent element is retained in PrO lattice due to the high segregation Gibbs free energy to form Ni/PrZnO, which aggravates the change of Pr and Pr, thus enhancing the oxygen vacancy concentration. The Zn promotes the reduction of Ni and quenches the adsorption capacity of H, alleviating the “hydrogen poisoning” behavior. As a result, the maximum powder density of single cell based on PNZ0.1 supported by YSZ electrolyte is 134 mW·cm at 800 ℃, which is more than twice higher than that of Ni/YSZ. Various characterizations reveal that the NH reaction path is the synergistic occurrence of ammonia decomposition and ammonia oxidation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.apcatb.2024.124530
Xuxin Li, Mingyue Zhang, Yijiang Liu, Xiong Sun, Dan Li, Bei Liu, Mei Yang, Hongbiao Chen, Shujiang Ding, Zhiqun Lin
Herein, we report a robust ligand-modulated interfacial assembly strategy for controllable metal doping to yield high-efficiency and durable bifunctional electrocatalysts of FeCoS-embedded hollow N-doped carbon (denoted H-FeCoS/NC) for electrocatalytic overall water splitting (EOWS). Specifically, the hollow Co-based layered double hydroxide (Co-LDH) is employed to render interfacial assembly of CoFe-PBA with tunable composition, morphology, and interface on Co-LDH, regulated by inorganic ligand. Subsequent sulfidation produces H-FeCoS/NC, manifesting outstanding OER/HER activities owing to favourable ligand-modulated Fe-doping, large specific surface area, well-dispersed FeCoS nanoparticles. DFT calculation reveals that ligand-modulated Fe-doping effectively promotes charge transfer, optimizes the intermediates/electrocatalyst interaction, and reduces OER/HER energy barriers, thus boosting the EOWS performance. The H-FeCoS/NC-assembled electrolyzer delivers a low cell voltage of 1.52 V and stably operates for 1000 h in alkaline medium, surpassing most non-noble-metal-based electrocatalysts. This work highlights a facile interfacial assembly route to engineer highly active electrocatalysts for high-performance and durable energy conversion and storage.
{"title":"Highly efficient and durable water electrolysis via ligand modulated interfacial assembly","authors":"Xuxin Li, Mingyue Zhang, Yijiang Liu, Xiong Sun, Dan Li, Bei Liu, Mei Yang, Hongbiao Chen, Shujiang Ding, Zhiqun Lin","doi":"10.1016/j.apcatb.2024.124530","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124530","url":null,"abstract":"Herein, we report a robust ligand-modulated interfacial assembly strategy for controllable metal doping to yield high-efficiency and durable bifunctional electrocatalysts of FeCoS-embedded hollow N-doped carbon (denoted H-FeCoS/NC) for electrocatalytic overall water splitting (EOWS). Specifically, the hollow Co-based layered double hydroxide (Co-LDH) is employed to render interfacial assembly of CoFe-PBA with tunable composition, morphology, and interface on Co-LDH, regulated by inorganic ligand. Subsequent sulfidation produces H-FeCoS/NC, manifesting outstanding OER/HER activities owing to favourable ligand-modulated Fe-doping, large specific surface area, well-dispersed FeCoS nanoparticles. DFT calculation reveals that ligand-modulated Fe-doping effectively promotes charge transfer, optimizes the intermediates/electrocatalyst interaction, and reduces OER/HER energy barriers, thus boosting the EOWS performance. The H-FeCoS/NC-assembled electrolyzer delivers a low cell voltage of 1.52 V and stably operates for 1000 h in alkaline medium, surpassing most non-noble-metal-based electrocatalysts. This work highlights a facile interfacial assembly route to engineer highly active electrocatalysts for high-performance and durable energy conversion and storage.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.apcatb.2024.124527
Xiaoqing Yan, Zihao Chen, Yufei Yue, Ruijie Chai, Honghui Ou, Yang Li, Guidong Yang
Regulating the dual active sites is crucial for enhancing the carrier-directed migration efficiency and shortening mass transfer distance of intermediates, particularly in photocatalytic overall water splitting. In this paper, we adopt in situ hydrothermal coupled gas phase chemical reduction methods to synthesize janus cobalt cocatalysts on g-CN. Experimental measurement and density functional theory calculations show that the janus cobalt cocatalysts fine-tunes the local electronic structure of g-CN, which can greatly reduce energy barriers and shorten mass transfer distance of intermediates for reactions. And while the built-in electric field of CoP and CoO also further efficiently facilitates rapid directional separation of interface carriers of the cocatalysts. This study elucidates atom-level mechanisms underlying overall water splitting and offers valuable insights for rational design of high-performance catalysts for overall water splitting. As a result, the CoP/CoO@g-CN samples exhibit a remarkable enhancement in overall water splitting activity (133.2 μmol g h H and 67.2 μmol g h O), surpassing that of the CoP@g-CN and CoO@g-CN samples by 1.4 and 3.8 times, respectively.
调节双活性位点对于提高载流子定向迁移效率和缩短中间产物的传质距离至关重要,尤其是在光催化整体水分离中。本文采用原位水热耦合气相化学还原法在 g-CN 上合成了 janus 钴催化剂。实验测量和密度泛函理论计算表明,破环钴催化剂可以微调 g-CN 的局部电子结构,从而大大降低能垒,缩短反应中间产物的传质距离。同时,CoP 和 CoO 的内置电场也进一步有效地促进了催化剂界面载流子的快速定向分离。这项研究阐明了整体水分离的原子级机制,为合理设计用于整体水分离的高性能催化剂提供了宝贵的见解。结果表明,CoP/CoO@g-CN 样品显著提高了整体水分离活性(133.2 μmol g h H 和 67.2 μmol g h O),分别是 CoP@g-CN 和 CoO@g-CN 样品的 1.4 倍和 3.8 倍。
{"title":"Janus cobalt sites on carbon nitride for efficient photocatalytic overall water splitting","authors":"Xiaoqing Yan, Zihao Chen, Yufei Yue, Ruijie Chai, Honghui Ou, Yang Li, Guidong Yang","doi":"10.1016/j.apcatb.2024.124527","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124527","url":null,"abstract":"Regulating the dual active sites is crucial for enhancing the carrier-directed migration efficiency and shortening mass transfer distance of intermediates, particularly in photocatalytic overall water splitting. In this paper, we adopt in situ hydrothermal coupled gas phase chemical reduction methods to synthesize janus cobalt cocatalysts on g-CN. Experimental measurement and density functional theory calculations show that the janus cobalt cocatalysts fine-tunes the local electronic structure of g-CN, which can greatly reduce energy barriers and shorten mass transfer distance of intermediates for reactions. And while the built-in electric field of CoP and CoO also further efficiently facilitates rapid directional separation of interface carriers of the cocatalysts. This study elucidates atom-level mechanisms underlying overall water splitting and offers valuable insights for rational design of high-performance catalysts for overall water splitting. As a result, the CoP/CoO@g-CN samples exhibit a remarkable enhancement in overall water splitting activity (133.2 μmol g h H and 67.2 μmol g h O), surpassing that of the CoP@g-CN and CoO@g-CN samples by 1.4 and 3.8 times, respectively.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.apcatb.2024.124526
Jiu Wang, Qi Zhao, Zheng Li, Yejun Xiao, Xianwen Zhang, Na Zhong, Heng Zhao, Liquan Jing, Devis Di Tommaso, Rachel Crespo-Otero, Md Golam Kibria, Jinguang Hu
Biomass photorefining is a promising approach for sustainable clean energy and high-value chemical production. However, selectively converting glucose into glucaric acid, the most valuable derivative, still poses a significant challenge due to the difficulty in transforming the terminal hydroxyl group into a carboxy group. Here, we demonstrate that highly selective glucose photorefining into glucaric acid can be achieved by synergistically coupling alkalizing modification of polymeric carbon nitride (CN) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediation, which promotes the oxidation of the primary alcohol group attached to the C6 site of gluconic acid. Density functional theory (DFT) calculations affirm the enhanced performance of modified CN in glucaric acid production. When medicated with TEMPO, the optimized photocatalysis achieves ∼ 100 % glucose conversion and > 30 % glucaric acid yield, setting a record for photocatalytic glucaric acid production. This work showcases the significance of combining photocatalyst modification and redox mediation for inspiring high-efficiency photocatalysis systems for biomass photorefining.
{"title":"Selective photocatalytic glucaric acid production from TEMPO-mediated glucose oxidation on alkalized carbon nitride","authors":"Jiu Wang, Qi Zhao, Zheng Li, Yejun Xiao, Xianwen Zhang, Na Zhong, Heng Zhao, Liquan Jing, Devis Di Tommaso, Rachel Crespo-Otero, Md Golam Kibria, Jinguang Hu","doi":"10.1016/j.apcatb.2024.124526","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124526","url":null,"abstract":"Biomass photorefining is a promising approach for sustainable clean energy and high-value chemical production. However, selectively converting glucose into glucaric acid, the most valuable derivative, still poses a significant challenge due to the difficulty in transforming the terminal hydroxyl group into a carboxy group. Here, we demonstrate that highly selective glucose photorefining into glucaric acid can be achieved by synergistically coupling alkalizing modification of polymeric carbon nitride (CN) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediation, which promotes the oxidation of the primary alcohol group attached to the C6 site of gluconic acid. Density functional theory (DFT) calculations affirm the enhanced performance of modified CN in glucaric acid production. When medicated with TEMPO, the optimized photocatalysis achieves ∼ 100 % glucose conversion and > 30 % glucaric acid yield, setting a record for photocatalytic glucaric acid production. This work showcases the significance of combining photocatalyst modification and redox mediation for inspiring high-efficiency photocatalysis systems for biomass photorefining.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.apcatb.2024.124528
Biyu Kang, Bincheng Xu, Zhixuan Chen, Fengting Li, Ying Wang
Electrocatalytic nitrate reduction (NORR) shows admirable potential for environmental remediation and producing valuable NH. However, the catalyst is restricted by the kinetic mismatch between NO-to-NO and NO-to-NH, which results in excess NO and poor NH selectivity. Herein, a kinetically matched tandem electrocatalytic strategy with tunable active hydrogen(*H) supply is designed. The combination of CuO and Co(HPO)(OH) (CoPO) playing key roles in NORR by i) on-demand supply of *H from CoPO; ii) the electronically coupled interface between CuO and CoPO enhance *H transfer kinetics. The CuO-CoPO-2 exhibits high NH yield of 22 mg cm h with Faradaic efficiency of 95 % at −0.37 V vs. RHE. In situ characterizations indicate the dynamic equilibrium between *H production and consumption contributes to high NORR performance. The techno-economic analyses reveal the system is economically viable compared to Haber-Bosch (H-B) process, which benefits from industrial current densities and superior energy efficiency at low potentials.
电催化硝酸盐还原(NORR)在环境修复和生产有价值的 NH 方面显示出令人钦佩的潜力。然而,催化剂受到 NO 转化为 NO 和 NO 转化为 NH 之间动力学不匹配的限制,导致 NO 过量和 NH 选择性差。在此,我们设计了一种具有可调活性氢(*H)供应的动力学匹配串联电催化策略。CuO 和 Co(HPO)(OH)(CoPO)的组合在 NORR 中发挥了关键作用:i)CoPO 按需提供*H;ii)CuO 和 CoPO 之间的电子耦合界面提高了*H 转移动力学。CuO-CoPO-2 的 NH 产率高达 22 mg cm h,在 -0.37 V 对 RHE 时的法拉第效率为 95%。原位特性分析表明,*H 生成和消耗之间的动态平衡有助于提高 NORR 性能。技术经济分析表明,与哈伯-博什(H-B)工艺相比,该系统在经济上是可行的,因为哈伯-博什工艺在低电位时具有工业电流密度和卓越的能效。
{"title":"Promoting active hydrogen supply for kinetically matched tandem electrocatalytic nitrate reduction to ammonia","authors":"Biyu Kang, Bincheng Xu, Zhixuan Chen, Fengting Li, Ying Wang","doi":"10.1016/j.apcatb.2024.124528","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124528","url":null,"abstract":"Electrocatalytic nitrate reduction (NORR) shows admirable potential for environmental remediation and producing valuable NH. However, the catalyst is restricted by the kinetic mismatch between NO-to-NO and NO-to-NH, which results in excess NO and poor NH selectivity. Herein, a kinetically matched tandem electrocatalytic strategy with tunable active hydrogen(*H) supply is designed. The combination of CuO and Co(HPO)(OH) (CoPO) playing key roles in NORR by i) on-demand supply of *H from CoPO; ii) the electronically coupled interface between CuO and CoPO enhance *H transfer kinetics. The CuO-CoPO-2 exhibits high NH yield of 22 mg cm h with Faradaic efficiency of 95 % at −0.37 V vs. RHE. In situ characterizations indicate the dynamic equilibrium between *H production and consumption contributes to high NORR performance. The techno-economic analyses reveal the system is economically viable compared to Haber-Bosch (H-B) process, which benefits from industrial current densities and superior energy efficiency at low potentials.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"316 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The efficiency of CO photoreduction is limited by slow charge kinetics and the mass transfer of hydrophobic CO and HO over the photocatalyst. Herein, we present a copper–alkynyl bond coordination polymer (CA-CP) with atomically-dispersed copper–alkynyl units (ADCAUs). By incorporating hydrophobic CA-CP with hydrophilic iodine vacancy-rich bismuth oxyhalides (I-BX), we construct amphiphilic heterojunction photocatalysts (CA-CP/I-BX) for visible-light-driven CO photoreduction. CA-CP/I-BX achieves excellent stability, 100 % CO selectivity and a CO-evolution rate of 157.6 μmol g h coupled with O releasing. Experimental and theoretical calculations elucidate that the ADCAUs favor adsorption and activation of CO, and have high CO selectivity. Moreover, the amphiphilic janus structure not only ensures the spatial synergy effect of CO reduction and HO oxidation, but also promotes charge separation and proton feeding, boosting CO photoreduction activity. This work develops Cu–alkynyl coordination polymer photocatalysts with ADCAUs and provides insights into hydrophobic–hydrophilic biphasic photocatalysts for synergistic CO reduction and HO oxidation.
光催化剂上缓慢的电荷动力学和疏水性 CO 和 HO 的传质限制了 CO 光还原的效率。在此,我们提出了一种具有原子分散铜-炔基单元(ADCAUs)的铜-炔基键配位聚合物(CA-CP)。通过将疏水性的 CA-CP 与亲水性的富碘空位氧卤化铋(I-BX)结合在一起,我们构建了两亲异质结光催化剂(CA-CP/I-BX),用于可见光驱动的 CO 光还原。CA-CP/I-BX 具有出色的稳定性、100% 的一氧化碳选择性以及 157.6 μmol g h 的一氧化碳转化率,同时还能释放 O。实验和理论计算表明,ADCAUs 有利于 CO 的吸附和活化,并具有较高的 CO 选择性。此外,两亲破环结构不仅确保了 CO 还原和 HO 氧化的空间协同效应,还促进了电荷分离和质子馈入,提高了 CO 光还原活性。这项研究开发了具有 ADCAUs 的铜-炔基配位聚合物光催化剂,为协同 CO 还原和 HO 氧化的疏水-亲水双相光催化剂提供了新的见解。
{"title":"Amphiphilic heterojunctions with atomically dispersed copper–alkynyl active units for highly efficient CO2 photoreduction","authors":"Fangjie Xu, Baoxin Ge, Pengyang Jiang, Xinlin Cai, Fangshu Xing, Caijin Huang","doi":"10.1016/j.apcatb.2024.124518","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124518","url":null,"abstract":"The efficiency of CO photoreduction is limited by slow charge kinetics and the mass transfer of hydrophobic CO and HO over the photocatalyst. Herein, we present a copper–alkynyl bond coordination polymer (CA-CP) with atomically-dispersed copper–alkynyl units (ADCAUs). By incorporating hydrophobic CA-CP with hydrophilic iodine vacancy-rich bismuth oxyhalides (I-BX), we construct amphiphilic heterojunction photocatalysts (CA-CP/I-BX) for visible-light-driven CO photoreduction. CA-CP/I-BX achieves excellent stability, 100 % CO selectivity and a CO-evolution rate of 157.6 μmol g h coupled with O releasing. Experimental and theoretical calculations elucidate that the ADCAUs favor adsorption and activation of CO, and have high CO selectivity. Moreover, the amphiphilic janus structure not only ensures the spatial synergy effect of CO reduction and HO oxidation, but also promotes charge separation and proton feeding, boosting CO photoreduction activity. This work develops Cu–alkynyl coordination polymer photocatalysts with ADCAUs and provides insights into hydrophobic–hydrophilic biphasic photocatalysts for synergistic CO reduction and HO oxidation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.apcatb.2024.124519
Raka G. Dastidar, Javier E. Chavarrio, Zhen Jiang, Daniel J. McClelland, Manos Mavrikakis, George W. Huber
δ-Valerolactone (DVL) is a five-carbon (C5) cyclic ester that can undergo ring-opening polymerization to yield high-performance, biocompatible polyesters. But current market prices of C5 chemicals like DVL are very high due to poor availability of C5 feedstock in petroleum. Herein, we demonstrate a novel route to DVL synthesis via dehydrogenation of biomass-derived 2-hydroxytetrahydropyran (HTHP) over Cu/SiO without the use of toxic reagents. Since HTHP exists in thermal equilibrium with 3,4-dihydropyran (DHP) via dehydration, and with 2,2’-oxybis(tetrahydropyran) and 5-(tetrahydropyran-2-yloxy)pentanal via acetalization, we have also determined the thermochemistry (ΔH and ΔG) of each competing reaction using density functional theory (DFT) calculations at the M06–2X/cc-pVTZ level. Lastly, by developing a kinetic model of all 8 reactions involved, we have achieved 84 % selectivity to DVL at 150°C in a packed bed reactor for over 72 hours of time on stream.
{"title":"Catalytic production of δ-valerolactone (DVL) from biobased 2-hydroxytetrahydropyran (HTHP) – Combined experimental and modeling study","authors":"Raka G. Dastidar, Javier E. Chavarrio, Zhen Jiang, Daniel J. McClelland, Manos Mavrikakis, George W. Huber","doi":"10.1016/j.apcatb.2024.124519","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124519","url":null,"abstract":"δ-Valerolactone (DVL) is a five-carbon (C5) cyclic ester that can undergo ring-opening polymerization to yield high-performance, biocompatible polyesters. But current market prices of C5 chemicals like DVL are very high due to poor availability of C5 feedstock in petroleum. Herein, we demonstrate a novel route to DVL synthesis via dehydrogenation of biomass-derived 2-hydroxytetrahydropyran (HTHP) over Cu/SiO without the use of toxic reagents. Since HTHP exists in thermal equilibrium with 3,4-dihydropyran (DHP) via dehydration, and with 2,2’-oxybis(tetrahydropyran) and 5-(tetrahydropyran-2-yloxy)pentanal via acetalization, we have also determined the thermochemistry (ΔH and ΔG) of each competing reaction using density functional theory (DFT) calculations at the M06–2X/cc-pVTZ level. Lastly, by developing a kinetic model of all 8 reactions involved, we have achieved 84 % selectivity to DVL at 150°C in a packed bed reactor for over 72 hours of time on stream.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Designing and constructing novel discrete architecture for quantum dots modified ultrathin hollow nanotube BiSnO/BiOI S-scheme heterojunctions for the first time in this work is an ideal strategy to improve the photocatalytic activity. As expected, the BiSnO/BiOI heterojunction exhibited outstanding performance of degradation bisphenol A (BPA), the rate constant of BiSnO/BiOI heterojunction was 1.7 and 41.8 times higher than that of BiOI and BiSnO, respectively. The promoted activity could be attributed to the spatial separation of photogenerated carriers as well as redox reaction sites due to the discrete structure, and the enhanced charge separation due to the S-scheme mechanism via Bi-O channels as derived from DFT calculations. Furthermore, BiSnO/BiOI heterojunction exhibited unprecedented ultra-efficient in BPA degradation compared to other published Bi-based catalysts, and excellent performance under actual sunlight contributes to its prospective practical application. This strategy affords a novel approach for fabricating discrete S-scheme heterojunctions photocatalysts with high-efficiency, strong-stable, and sustainable.
本研究首次设计并构建了新型离散结构的量子点修饰超细空心纳米管 BiSnO/BiOI S 型异质结,是提高光催化活性的理想策略。不出所料,BiSnO/BiOI异质结在降解双酚A(BPA)方面表现突出,BiSnO/BiOI异质结的速率常数分别是BiOI和BiSnO的1.7倍和41.8倍。活性的提高可归因于离散结构导致的光生载流子和氧化还原反应位点的空间分离,以及 DFT 计算得出的通过 Bi-O 通道的 S 型机制导致的电荷分离增强。此外,与其他已发表的铋基催化剂相比,BiSnO/BiOI 异质结在降解双酚 A 方面表现出前所未有的超高效率,而且在实际日照下的优异性能也为其实际应用前景做出了贡献。这种策略为制造高效、强稳定、可持续的离散 S 型异质结光催化剂提供了一种新方法。
{"title":"Novel discrete architecture for quantum dots modified ultrathin hollow nanotube Bi2Sn2O7/Bi4O5I2 S-scheme heterojunction for ultra-efficient photocatalytic degradation of bisphenol A","authors":"Huizhong Wu, Jiana Jing, ShaSha Li, Shuaishuai Li, Jingyang Liu, Ruiheng Liang, Yican Zhang, Zehua Xia, Minghua Zhou","doi":"10.1016/j.apcatb.2024.124517","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124517","url":null,"abstract":"Designing and constructing novel discrete architecture for quantum dots modified ultrathin hollow nanotube BiSnO/BiOI S-scheme heterojunctions for the first time in this work is an ideal strategy to improve the photocatalytic activity. As expected, the BiSnO/BiOI heterojunction exhibited outstanding performance of degradation bisphenol A (BPA), the rate constant of BiSnO/BiOI heterojunction was 1.7 and 41.8 times higher than that of BiOI and BiSnO, respectively. The promoted activity could be attributed to the spatial separation of photogenerated carriers as well as redox reaction sites due to the discrete structure, and the enhanced charge separation due to the S-scheme mechanism via Bi-O channels as derived from DFT calculations. Furthermore, BiSnO/BiOI heterojunction exhibited unprecedented ultra-efficient in BPA degradation compared to other published Bi-based catalysts, and excellent performance under actual sunlight contributes to its prospective practical application. This strategy affords a novel approach for fabricating discrete S-scheme heterojunctions photocatalysts with high-efficiency, strong-stable, and sustainable.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}