The conventional automatic identification algorithm of double-feature fault signal waveform of power equipment mainly uses ART (Adaptive Resonnance Theory) network for classification and discrimination, which is easily influenced by the identification mapping relationship, resulting in low correct identification rate of fault signal waveform. Therefore, it is necessary to design a brand-new automatic identification algorithm of double-feature fault signal waveform of power equipment. That is to say, the waveform characteristics of dual-feature fault signal of power equipment are extracted, and the optimization algorithm for automatic identification of dual-feature fault signal waveform of power equipment is generated, so that the automatic identification of fault signal waveform is realized. The experimental results show that the designed double-feature fault signal waveform automatic identification algorithm for power equipment has a high correct fault identification rate, which proves that the designed double-feature fault signal waveform automatic identification algorithm for power equipment has good identification effect, reliability and certain application value, and has made certain contributions to improving the operation safety of power equipment.
{"title":"Design of automatic identification algorithm for double-feature fault signal waveform of power equipment","authors":"Huidong Tang, Duo Li, Wendong Lei, Jinpeng Meng","doi":"10.1117/12.3014372","DOIUrl":"https://doi.org/10.1117/12.3014372","url":null,"abstract":"The conventional automatic identification algorithm of double-feature fault signal waveform of power equipment mainly uses ART (Adaptive Resonnance Theory) network for classification and discrimination, which is easily influenced by the identification mapping relationship, resulting in low correct identification rate of fault signal waveform. Therefore, it is necessary to design a brand-new automatic identification algorithm of double-feature fault signal waveform of power equipment. That is to say, the waveform characteristics of dual-feature fault signal of power equipment are extracted, and the optimization algorithm for automatic identification of dual-feature fault signal waveform of power equipment is generated, so that the automatic identification of fault signal waveform is realized. The experimental results show that the designed double-feature fault signal waveform automatic identification algorithm for power equipment has a high correct fault identification rate, which proves that the designed double-feature fault signal waveform automatic identification algorithm for power equipment has good identification effect, reliability and certain application value, and has made certain contributions to improving the operation safety of power equipment.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"16 4","pages":"1296903 - 1296903-7"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an image retrieval problem, person re-identification (Re-ID) relies on robust features extracted by convolution neural models. Most current methods use large backbone models for feature extraction (e.g., ResNet50). However, these large backbone models have many parameters, which cause many problems when embedded in smart camera devices. For example, the device's computing resources are limited, the real-time operation speed is limited, etc. So it is necessary to construct models with low parameters and low complexity. This paper proposes a new lightweight baseline for Re-ID, which is SCL-net and all underlying modules of the model are reconstructed. In our work, we design a new convolution unit----symmetrical combination units (SC-unit), which construct features map of richer channels by reusing feature maps from different convolution layers. In addition, we redesigned all the base modules of SCL-net and proved the effectiveness of all modules. We joint training of shallow and deep features of the model respectively to improve the accuracy of the model. Our SCL-net has about 2.3M parameters, and it can achieve 95.2%/85.9% on Rank-1 and mAP without any pretraining.
{"title":"Lightweight person re-identification model employing symmetrical combination units","authors":"dawei cai, qingwei tang","doi":"10.1117/12.3014389","DOIUrl":"https://doi.org/10.1117/12.3014389","url":null,"abstract":"As an image retrieval problem, person re-identification (Re-ID) relies on robust features extracted by convolution neural models. Most current methods use large backbone models for feature extraction (e.g., ResNet50). However, these large backbone models have many parameters, which cause many problems when embedded in smart camera devices. For example, the device's computing resources are limited, the real-time operation speed is limited, etc. So it is necessary to construct models with low parameters and low complexity. This paper proposes a new lightweight baseline for Re-ID, which is SCL-net and all underlying modules of the model are reconstructed. In our work, we design a new convolution unit----symmetrical combination units (SC-unit), which construct features map of richer channels by reusing feature maps from different convolution layers. In addition, we redesigned all the base modules of SCL-net and proved the effectiveness of all modules. We joint training of shallow and deep features of the model respectively to improve the accuracy of the model. Our SCL-net has about 2.3M parameters, and it can achieve 95.2%/85.9% on Rank-1 and mAP without any pretraining.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"16 2","pages":"129692O - 129692O-11"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electrical connection serves as a vital and abundant link in power, electronic equipment, and systems, with the electrical contact acting as its core component. In practical working conditions, fretting wear occurs during the usage of electrical contacts, leading to surface destruction and a decline in their performance. Determining the degree of wear on electrical contacts is crucial for assessing their failure in engineering applications. This study focuses on conducting fretting wear tests on copper material under different cycles for electrical contacts while utilizing machine vision algorithms to detect the morphological characteristics of wear marks. Gray threshold segmentation is applied to extract texture features from wear marks after various oxidation conditions. Pseudocolorization techniques are employed to process extracted morphologies, followed by calculating their characteristic areas. Finally, combining these results with contact resistance curves allows for judging the electrical conductivity of the electrical contact under different cycles.
{"title":"Research on electrical contact performance based on machine vision","authors":"Chun-lin Li, Yangxin Ou, Lei You, Zewu Zhang","doi":"10.1117/12.3014355","DOIUrl":"https://doi.org/10.1117/12.3014355","url":null,"abstract":"The electrical connection serves as a vital and abundant link in power, electronic equipment, and systems, with the electrical contact acting as its core component. In practical working conditions, fretting wear occurs during the usage of electrical contacts, leading to surface destruction and a decline in their performance. Determining the degree of wear on electrical contacts is crucial for assessing their failure in engineering applications. This study focuses on conducting fretting wear tests on copper material under different cycles for electrical contacts while utilizing machine vision algorithms to detect the morphological characteristics of wear marks. Gray threshold segmentation is applied to extract texture features from wear marks after various oxidation conditions. Pseudocolorization techniques are employed to process extracted morphologies, followed by calculating their characteristic areas. Finally, combining these results with contact resistance curves allows for judging the electrical conductivity of the electrical contact under different cycles.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"5 4","pages":"129692T - 129692T-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Under the background of digital information age, faced with the increasing data scale and complexity, the application limitations of traditional centralized retrieval services are becoming more and more obvious, and it is urgent to improve the data structure expansion, incremental update control and retrieval operation efficiency. In this paper, the efficient retrieval algorithm and technology of massive data information are taken as the research object, and a set of construction scheme of big data storage and retrieval system is proposed for unstructured data, which promotes the organic combination of distributed technology and full-text retrieval technology and realizes the optimization of fast retrieval processing mode of large-scale data. The system is based on Hadoop framework, with Hbase as the data storage module, and combined with ElasticSearch engine, IKAnalyzer word breaker and Redis cache to complete real-time and efficient data retrieval. Finally, based on Java web technology, a network application program convenient for users to operate online is formed. Practice has proved that the system has solved many problems in the process of collecting, storing and retrieving massive unstructured text data. At the same time, it improves the sharing transmission efficiency and concurrent access control ability of data information, and opens up a brand-new big data retrieval service model.
在数字信息时代背景下,面对日益增长的数据规模和复杂性,传统集中式检索服务的应用局限性日益明显,亟需提高数据结构扩展、增量更新控制和检索操作效率。本文以海量数据信息的高效检索算法与技术为研究对象,针对非结构化数据提出了一套大数据存储与检索系统的构建方案,促进了分布式技术与全文检索技术的有机结合,实现了大规模数据快速检索处理模式的优化。该系统基于Hadoop框架,以Hbase为数据存储模块,结合ElasticSearch引擎、IKAnalyzer断字器和Redis缓存,完成实时高效的数据检索。最后,基于 Java Web 技术,形成了方便用户在线操作的网络应用程序。实践证明,该系统解决了海量非结构化文本数据采集、存储和检索过程中的诸多问题。同时,提高了数据信息的共享传输效率和并发访问控制能力,开辟了一种全新的大数据检索服务模式。
{"title":"Research and implementation of efficient retrieval algorithm in big data environment","authors":"pan gao, Shuhua shao","doi":"10.1117/12.3014436","DOIUrl":"https://doi.org/10.1117/12.3014436","url":null,"abstract":"Under the background of digital information age, faced with the increasing data scale and complexity, the application limitations of traditional centralized retrieval services are becoming more and more obvious, and it is urgent to improve the data structure expansion, incremental update control and retrieval operation efficiency. In this paper, the efficient retrieval algorithm and technology of massive data information are taken as the research object, and a set of construction scheme of big data storage and retrieval system is proposed for unstructured data, which promotes the organic combination of distributed technology and full-text retrieval technology and realizes the optimization of fast retrieval processing mode of large-scale data. The system is based on Hadoop framework, with Hbase as the data storage module, and combined with ElasticSearch engine, IKAnalyzer word breaker and Redis cache to complete real-time and efficient data retrieval. Finally, based on Java web technology, a network application program convenient for users to operate online is formed. Practice has proved that the system has solved many problems in the process of collecting, storing and retrieving massive unstructured text data. At the same time, it improves the sharing transmission efficiency and concurrent access control ability of data information, and opens up a brand-new big data retrieval service model.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"24 4","pages":"129690H - 129690H-4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is crucial to ensure the safety of personnel and prevent unauthorized intrusion in the non-stop construction area of large airports. This study proposes an image recognition method for dangerous behavior of non-stop construction personnel in large airports based on infrared imaging technology. Using infrared imaging technology to collect visual information of images of non-stop construction personnel in large airports, and analyzing images using structured similarity features; Based on supervised comparative learning, the method of extracting backbone features is adopted to achieve dynamic feature segmentation and reconstruction processing; Based on ambiguity analysis, extract the edge bounding contour features of personnel and identify dangerous intrusion behaviors of personnel. Through experimental verification, this method has high accuracy in detecting personnel's dangerous intrusion behavior.
{"title":"Image recognition method for dangerous behavior of non-stop construction personnel in large airports","authors":"Zhenyu Zhao, Liangsui Geng","doi":"10.1117/12.3014586","DOIUrl":"https://doi.org/10.1117/12.3014586","url":null,"abstract":"It is crucial to ensure the safety of personnel and prevent unauthorized intrusion in the non-stop construction area of large airports. This study proposes an image recognition method for dangerous behavior of non-stop construction personnel in large airports based on infrared imaging technology. Using infrared imaging technology to collect visual information of images of non-stop construction personnel in large airports, and analyzing images using structured similarity features; Based on supervised comparative learning, the method of extracting backbone features is adopted to achieve dynamic feature segmentation and reconstruction processing; Based on ambiguity analysis, extract the edge bounding contour features of personnel and identify dangerous intrusion behaviors of personnel. Through experimental verification, this method has high accuracy in detecting personnel's dangerous intrusion behavior.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"77 2","pages":"1296915 - 1296915-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding
Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.
{"title":"Multitarget detection of assembly parts based on improved YOLOv7","authors":"Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding","doi":"10.1117/12.3014468","DOIUrl":"https://doi.org/10.1117/12.3014468","url":null,"abstract":"Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 8","pages":"1296927 - 1296927-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to the thin nature of hot rolled steel plates and strips, the vast majority of which are surface defects that can easily lead to production accidents, and limited by the challenges of insufficient datasets and a large amount of unlabeled data, this paper proposes a comparative learning method to solve the above problems. In terms of methods, a dual data augmentation strategy is adopted. Firstly, the original image is data enhanced through manual processing, and CycleGAN is introduced for style transfer to enrich the dataset. Then, ResNet152 network is used for feature extraction, and several comparative learning methods are applied to observe the accuracy of hot rolled strip defect detection. In the end, the improved comparative learning method in this article successfully improved the accuracy of surface defect classification for hot rolled strip steel. Through this research, we are committed to providing more reliable quality control methods for industrial production and reducing the risk of production accidents.
{"title":"Research on surface defect classification method of hot rolled strip steel based on comparative learning","authors":"Xingshuai Zang, Shengnan Zhang, Yu He","doi":"10.1117/12.3014479","DOIUrl":"https://doi.org/10.1117/12.3014479","url":null,"abstract":"In response to the thin nature of hot rolled steel plates and strips, the vast majority of which are surface defects that can easily lead to production accidents, and limited by the challenges of insufficient datasets and a large amount of unlabeled data, this paper proposes a comparative learning method to solve the above problems. In terms of methods, a dual data augmentation strategy is adopted. Firstly, the original image is data enhanced through manual processing, and CycleGAN is introduced for style transfer to enrich the dataset. Then, ResNet152 network is used for feature extraction, and several comparative learning methods are applied to observe the accuracy of hot rolled strip defect detection. In the end, the improved comparative learning method in this article successfully improved the accuracy of surface defect classification for hot rolled strip steel. Through this research, we are committed to providing more reliable quality control methods for industrial production and reducing the risk of production accidents.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"37 3","pages":"129691K - 129691K-5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinxiang Feng, Jingyang Li, Yufeng Zhang, H. Baoyin
Dung Beetle Optimizer(DBO) is an effective metaheuristic algorithm proposed in 2022. But at the same time, DBO also suffers from a local-global imbalance in the exploration process, tends to fall into local optimization and exploitability needs to be further improved, etc. Therefore, we propose an improved DBO algorithm to address these shortcomings and named it CDBO. Firstly, Tent chaotic mapping can be used for the purpose of initializing the population, improving the quality of initial solutions, promoting the enhancement of population variety, and augmenting the global search capability of the algorithm. Secondly, introducing dynamic weighting factors enables the algorithm to fully search for local areas while also taking into account global exploration. To assess the effectiveness of CDBO, a total of 12 benchmark test functions were utilized to evaluate the performance of this algorithm, wherein CDBO was compared with other widely recognized metaheuristic algorithms. The results showed that CDBO had improved search accuracy and convergence speed. Finally, CDBO was applied to airfoil optimization problem, verifying the feasibility of applying CDBO to practical engineering problems.
{"title":"An improved dung beetle optimizer","authors":"Jinxiang Feng, Jingyang Li, Yufeng Zhang, H. Baoyin","doi":"10.1117/12.3014472","DOIUrl":"https://doi.org/10.1117/12.3014472","url":null,"abstract":"Dung Beetle Optimizer(DBO) is an effective metaheuristic algorithm proposed in 2022. But at the same time, DBO also suffers from a local-global imbalance in the exploration process, tends to fall into local optimization and exploitability needs to be further improved, etc. Therefore, we propose an improved DBO algorithm to address these shortcomings and named it CDBO. Firstly, Tent chaotic mapping can be used for the purpose of initializing the population, improving the quality of initial solutions, promoting the enhancement of population variety, and augmenting the global search capability of the algorithm. Secondly, introducing dynamic weighting factors enables the algorithm to fully search for local areas while also taking into account global exploration. To assess the effectiveness of CDBO, a total of 12 benchmark test functions were utilized to evaluate the performance of this algorithm, wherein CDBO was compared with other widely recognized metaheuristic algorithms. The results showed that CDBO had improved search accuracy and convergence speed. Finally, CDBO was applied to airfoil optimization problem, verifying the feasibility of applying CDBO to practical engineering problems.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"9 2","pages":"129692V - 129692V-9"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we research the multi-objective vehicle routing problem with time windows under uncertainty. For solving it efficiently, the robust multi-objective particle swarm optimization incorporates the simulated annealing algorithm is proposed. The new algorithm aims to improve the local search abilities of particles. Experimental results show that the proposed algorithm outperforms the traditional the robust multi-objective particle swarm optimization algorithm on the selected problem sets as the uncertain interference intensity increases.
{"title":"Multi-objective vehicle routing problem with time windows under uncertain conditions","authors":"jiashuo guo, Yuxin Liu","doi":"10.1117/12.3014402","DOIUrl":"https://doi.org/10.1117/12.3014402","url":null,"abstract":"In this paper, we research the multi-objective vehicle routing problem with time windows under uncertainty. For solving it efficiently, the robust multi-objective particle swarm optimization incorporates the simulated annealing algorithm is proposed. The new algorithm aims to improve the local search abilities of particles. Experimental results show that the proposed algorithm outperforms the traditional the robust multi-objective particle swarm optimization algorithm on the selected problem sets as the uncertain interference intensity increases.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"18 4","pages":"129692C - 129692C-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid development of the cross-border e-commerce market has led to an increase in logistics complexity, and intelligent monitoring and early warning systems are needed to meet the challenges. The objective of this study is to design and implement a cross-border e-commerce logistics monitoring and early warning system based on improved genetic algorithms to enhance the reliability of transportation quality. The system collects data related to cross-border e-commerce logistics transportation quality, analyzes and optimizes the improved genetic algorithm in one system, and uses the improved genetic algorithm for decision-making and planning. The system has a real-time monitoring function to discover potential transportation quality problems and conduct predictive analysis to identify the min advance for timely warning. The system can provide cross-border e-commerce enterprises with more efficient logistics and transportation quality management, reduce costs and improve customer satisfaction. It helps enterprises to cope with logistics challenges, provide more reliable services, and promote the continuous development and prosperity of cross-border e-commerce.
{"title":"Design and realization of cross-border e-commerce logistics intelligent monitoring and early warning system based on improved genetic algorithm","authors":"Fei Lei, Zicen Liao, Mingxiu Huang, Hui Tian","doi":"10.1117/12.3014648","DOIUrl":"https://doi.org/10.1117/12.3014648","url":null,"abstract":"The rapid development of the cross-border e-commerce market has led to an increase in logistics complexity, and intelligent monitoring and early warning systems are needed to meet the challenges. The objective of this study is to design and implement a cross-border e-commerce logistics monitoring and early warning system based on improved genetic algorithms to enhance the reliability of transportation quality. The system collects data related to cross-border e-commerce logistics transportation quality, analyzes and optimizes the improved genetic algorithm in one system, and uses the improved genetic algorithm for decision-making and planning. The system has a real-time monitoring function to discover potential transportation quality problems and conduct predictive analysis to identify the min advance for timely warning. The system can provide cross-border e-commerce enterprises with more efficient logistics and transportation quality management, reduce costs and improve customer satisfaction. It helps enterprises to cope with logistics challenges, provide more reliable services, and promote the continuous development and prosperity of cross-border e-commerce.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"58 1","pages":"129690W - 129690W-4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}