首页 > 最新文献

International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)最新文献

英文 中文
Lightweight person re-identification model employing symmetrical combination units 采用对称组合单元的轻量级人员再识别模型
dawei cai, qingwei tang
As an image retrieval problem, person re-identification (Re-ID) relies on robust features extracted by convolution neural models. Most current methods use large backbone models for feature extraction (e.g., ResNet50). However, these large backbone models have many parameters, which cause many problems when embedded in smart camera devices. For example, the device's computing resources are limited, the real-time operation speed is limited, etc. So it is necessary to construct models with low parameters and low complexity. This paper proposes a new lightweight baseline for Re-ID, which is SCL-net and all underlying modules of the model are reconstructed. In our work, we design a new convolution unit----symmetrical combination units (SC-unit), which construct features map of richer channels by reusing feature maps from different convolution layers. In addition, we redesigned all the base modules of SCL-net and proved the effectiveness of all modules. We joint training of shallow and deep features of the model respectively to improve the accuracy of the model. Our SCL-net has about 2.3M parameters, and it can achieve 95.2%/85.9% on Rank-1 and mAP without any pretraining.
作为一个图像检索问题,人员再识别(Re-ID)依赖于卷积神经模型提取的稳健特征。目前大多数方法使用大型骨干模型进行特征提取(如 ResNet50)。然而,这些大型骨干模型有很多参数,在嵌入智能摄像设备时会产生很多问题。例如,设备的计算资源有限、实时运行速度有限等。因此,有必要构建低参数、低复杂度的模型。本文提出了一种新的轻量级 Re-ID 基线,即 SCL-net,并对模型的所有底层模块进行了重构。在我们的工作中,我们设计了一个新的卷积单元----symmetrical combination units(SC-unit),它通过重复使用不同卷积层的特征图来构建更丰富的信道特征图。此外,我们还重新设计了 SCL 网络的所有基础模块,并证明了所有模块的有效性。我们分别对模型的浅层和深层特征进行了联合训练,以提高模型的准确性。我们的 SCL-net 有大约 230 万个参数,在没有任何预训练的情况下,它在 Rank-1 和 mAP 上的准确率分别达到了 95.2% 和 85.9%。
{"title":"Lightweight person re-identification model employing symmetrical combination units","authors":"dawei cai, qingwei tang","doi":"10.1117/12.3014389","DOIUrl":"https://doi.org/10.1117/12.3014389","url":null,"abstract":"As an image retrieval problem, person re-identification (Re-ID) relies on robust features extracted by convolution neural models. Most current methods use large backbone models for feature extraction (e.g., ResNet50). However, these large backbone models have many parameters, which cause many problems when embedded in smart camera devices. For example, the device's computing resources are limited, the real-time operation speed is limited, etc. So it is necessary to construct models with low parameters and low complexity. This paper proposes a new lightweight baseline for Re-ID, which is SCL-net and all underlying modules of the model are reconstructed. In our work, we design a new convolution unit----symmetrical combination units (SC-unit), which construct features map of richer channels by reusing feature maps from different convolution layers. In addition, we redesigned all the base modules of SCL-net and proved the effectiveness of all modules. We joint training of shallow and deep features of the model respectively to improve the accuracy of the model. Our SCL-net has about 2.3M parameters, and it can achieve 95.2%/85.9% on Rank-1 and mAP without any pretraining.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"16 2","pages":"129692O - 129692O-11"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on selective disassembly sequence planning based on graph model 基于图模型的选择性拆卸序列规划研究
dongmei Liu, Binfeng D. Lin, Yongfeng Li, V. Tarelnyk
In order to solve the disassembly plan of the target parts in the product with high efficiency, a disassembly hybrid graph model of the target parts is proposed and established based on the disassembly connection relationship and disassembly priority constraint relationship between the parts in the product. The disassembly sequence planning problem of the target parts is transformed into a search and optimization problem for the path with the optimal value in the graph model. At the same time, the sorting algorithm is used to solve the mixed graph model of the target part disassembly, finally, an example is given the feasibility of this method has been verified.
为了高效解决产品中目标零件的拆卸计划问题,根据产品中零件之间的拆卸连接关系和拆卸优先级约束关系,提出并建立了目标零件的拆卸混合图模型。将目标零件的拆卸顺序规划问题转化为图模型中最优值路径的搜索和优化问题。同时,利用排序算法求解目标零件拆卸的混合图模型,最后通过实例验证了该方法的可行性。
{"title":"Research on selective disassembly sequence planning based on graph model","authors":"dongmei Liu, Binfeng D. Lin, Yongfeng Li, V. Tarelnyk","doi":"10.1117/12.3014520","DOIUrl":"https://doi.org/10.1117/12.3014520","url":null,"abstract":"In order to solve the disassembly plan of the target parts in the product with high efficiency, a disassembly hybrid graph model of the target parts is proposed and established based on the disassembly connection relationship and disassembly priority constraint relationship between the parts in the product. The disassembly sequence planning problem of the target parts is transformed into a search and optimization problem for the path with the optimal value in the graph model. At the same time, the sorting algorithm is used to solve the mixed graph model of the target part disassembly, finally, an example is given the feasibility of this method has been verified.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"186 1-2","pages":"129691W - 129691W-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image recognition method for dangerous behavior of non-stop construction personnel in large airports 大型机场不停航施工人员危险行为的图像识别方法
Zhenyu Zhao, Liangsui Geng
It is crucial to ensure the safety of personnel and prevent unauthorized intrusion in the non-stop construction area of large airports. This study proposes an image recognition method for dangerous behavior of non-stop construction personnel in large airports based on infrared imaging technology. Using infrared imaging technology to collect visual information of images of non-stop construction personnel in large airports, and analyzing images using structured similarity features; Based on supervised comparative learning, the method of extracting backbone features is adopted to achieve dynamic feature segmentation and reconstruction processing; Based on ambiguity analysis, extract the edge bounding contour features of personnel and identify dangerous intrusion behaviors of personnel. Through experimental verification, this method has high accuracy in detecting personnel's dangerous intrusion behavior.
在大型机场的不停航施工区域,确保人员安全和防止非法入侵至关重要。本研究提出了一种基于红外成像技术的大型机场不停航施工人员危险行为图像识别方法。利用红外成像技术采集大型机场不停航施工人员图像的视觉信息,利用结构化相似特征对图像进行分析;基于监督比较学习,采用提取骨干特征的方法,实现动态特征分割与重构处理;基于模糊性分析,提取人员边缘边界轮廓特征,识别人员危险入侵行为。通过实验验证,该方法对人员危险入侵行为的检测具有较高的准确性。
{"title":"Image recognition method for dangerous behavior of non-stop construction personnel in large airports","authors":"Zhenyu Zhao, Liangsui Geng","doi":"10.1117/12.3014586","DOIUrl":"https://doi.org/10.1117/12.3014586","url":null,"abstract":"It is crucial to ensure the safety of personnel and prevent unauthorized intrusion in the non-stop construction area of large airports. This study proposes an image recognition method for dangerous behavior of non-stop construction personnel in large airports based on infrared imaging technology. Using infrared imaging technology to collect visual information of images of non-stop construction personnel in large airports, and analyzing images using structured similarity features; Based on supervised comparative learning, the method of extracting backbone features is adopted to achieve dynamic feature segmentation and reconstruction processing; Based on ambiguity analysis, extract the edge bounding contour features of personnel and identify dangerous intrusion behaviors of personnel. Through experimental verification, this method has high accuracy in detecting personnel's dangerous intrusion behavior.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"77 2","pages":"1296915 - 1296915-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on electrical contact performance based on machine vision 基于机器视觉的电接触性能研究
Chun-lin Li, Yangxin Ou, Lei You, Zewu Zhang
The electrical connection serves as a vital and abundant link in power, electronic equipment, and systems, with the electrical contact acting as its core component. In practical working conditions, fretting wear occurs during the usage of electrical contacts, leading to surface destruction and a decline in their performance. Determining the degree of wear on electrical contacts is crucial for assessing their failure in engineering applications. This study focuses on conducting fretting wear tests on copper material under different cycles for electrical contacts while utilizing machine vision algorithms to detect the morphological characteristics of wear marks. Gray threshold segmentation is applied to extract texture features from wear marks after various oxidation conditions. Pseudocolorization techniques are employed to process extracted morphologies, followed by calculating their characteristic areas. Finally, combining these results with contact resistance curves allows for judging the electrical conductivity of the electrical contact under different cycles.
电气连接是电力、电子设备和系统中重要而丰富的环节,电气触点是其核心部件。在实际工作条件下,电触点在使用过程中会发生摩擦磨损,导致表面破坏和性能下降。确定电触点的磨损程度对于评估其在工程应用中的故障至关重要。本研究的重点是利用机器视觉算法检测磨损痕迹的形态特征,同时在不同的电触点循环下对铜材料进行摩擦磨损测试。应用灰色阈值分割技术提取各种氧化条件下磨损痕迹的纹理特征。采用伪彩色化技术处理提取的形态,然后计算其特征面积。最后,将这些结果与接触电阻曲线相结合,可以判断不同周期下电气接触的导电性。
{"title":"Research on electrical contact performance based on machine vision","authors":"Chun-lin Li, Yangxin Ou, Lei You, Zewu Zhang","doi":"10.1117/12.3014355","DOIUrl":"https://doi.org/10.1117/12.3014355","url":null,"abstract":"The electrical connection serves as a vital and abundant link in power, electronic equipment, and systems, with the electrical contact acting as its core component. In practical working conditions, fretting wear occurs during the usage of electrical contacts, leading to surface destruction and a decline in their performance. Determining the degree of wear on electrical contacts is crucial for assessing their failure in engineering applications. This study focuses on conducting fretting wear tests on copper material under different cycles for electrical contacts while utilizing machine vision algorithms to detect the morphological characteristics of wear marks. Gray threshold segmentation is applied to extract texture features from wear marks after various oxidation conditions. Pseudocolorization techniques are employed to process extracted morphologies, followed by calculating their characteristic areas. Finally, combining these results with contact resistance curves allows for judging the electrical conductivity of the electrical contact under different cycles.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"5 4","pages":"129692T - 129692T-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research and implementation of efficient retrieval algorithm in big data environment 大数据环境下高效检索算法的研究与实现
pan gao, Shuhua shao
Under the background of digital information age, faced with the increasing data scale and complexity, the application limitations of traditional centralized retrieval services are becoming more and more obvious, and it is urgent to improve the data structure expansion, incremental update control and retrieval operation efficiency. In this paper, the efficient retrieval algorithm and technology of massive data information are taken as the research object, and a set of construction scheme of big data storage and retrieval system is proposed for unstructured data, which promotes the organic combination of distributed technology and full-text retrieval technology and realizes the optimization of fast retrieval processing mode of large-scale data. The system is based on Hadoop framework, with Hbase as the data storage module, and combined with ElasticSearch engine, IKAnalyzer word breaker and Redis cache to complete real-time and efficient data retrieval. Finally, based on Java web technology, a network application program convenient for users to operate online is formed. Practice has proved that the system has solved many problems in the process of collecting, storing and retrieving massive unstructured text data. At the same time, it improves the sharing transmission efficiency and concurrent access control ability of data information, and opens up a brand-new big data retrieval service model.
在数字信息时代背景下,面对日益增长的数据规模和复杂性,传统集中式检索服务的应用局限性日益明显,亟需提高数据结构扩展、增量更新控制和检索操作效率。本文以海量数据信息的高效检索算法与技术为研究对象,针对非结构化数据提出了一套大数据存储与检索系统的构建方案,促进了分布式技术与全文检索技术的有机结合,实现了大规模数据快速检索处理模式的优化。该系统基于Hadoop框架,以Hbase为数据存储模块,结合ElasticSearch引擎、IKAnalyzer断字器和Redis缓存,完成实时高效的数据检索。最后,基于 Java Web 技术,形成了方便用户在线操作的网络应用程序。实践证明,该系统解决了海量非结构化文本数据采集、存储和检索过程中的诸多问题。同时,提高了数据信息的共享传输效率和并发访问控制能力,开辟了一种全新的大数据检索服务模式。
{"title":"Research and implementation of efficient retrieval algorithm in big data environment","authors":"pan gao, Shuhua shao","doi":"10.1117/12.3014436","DOIUrl":"https://doi.org/10.1117/12.3014436","url":null,"abstract":"Under the background of digital information age, faced with the increasing data scale and complexity, the application limitations of traditional centralized retrieval services are becoming more and more obvious, and it is urgent to improve the data structure expansion, incremental update control and retrieval operation efficiency. In this paper, the efficient retrieval algorithm and technology of massive data information are taken as the research object, and a set of construction scheme of big data storage and retrieval system is proposed for unstructured data, which promotes the organic combination of distributed technology and full-text retrieval technology and realizes the optimization of fast retrieval processing mode of large-scale data. The system is based on Hadoop framework, with Hbase as the data storage module, and combined with ElasticSearch engine, IKAnalyzer word breaker and Redis cache to complete real-time and efficient data retrieval. Finally, based on Java web technology, a network application program convenient for users to operate online is formed. Practice has proved that the system has solved many problems in the process of collecting, storing and retrieving massive unstructured text data. At the same time, it improves the sharing transmission efficiency and concurrent access control ability of data information, and opens up a brand-new big data retrieval service model.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"24 4","pages":"129690H - 129690H-4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140511995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multitarget detection of assembly parts based on improved YOLOv7 基于改进型 YOLOv7 的装配部件多目标检测
Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding
Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.
针对复杂人机协作装配场景中的多目标检测,提出了一种改进的 YOLOv7 算法。具体来说,该算法引入了 Wise-Intersection over Union(Wise-IoU)损失函数和 BiFormer 注意模块,以提高小型装配部件的识别性能。以蜗轮减速器为例,建立了一个装配零件识别数据集。通过在自制数据集中训练改进后的网络,mAP@.5 值提高了 3.25%,平均总损失减少了 0.02365。实验结果表明,改进后的 YOLOv7 算法可以实现协同装配中的多装配零件检测。
{"title":"Multitarget detection of assembly parts based on improved YOLOv7","authors":"Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding","doi":"10.1117/12.3014468","DOIUrl":"https://doi.org/10.1117/12.3014468","url":null,"abstract":"Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 8","pages":"1296927 - 1296927-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the simplification of building complex model under multi-factor constraints 多因素约束下建筑复杂模型的简化研究
Haoyuan Bai, Kelong Yang, Shunhua Liao
With the wide application of 3D building cluster models in urban planning, visualization and other fields, how to improve the rendering efficiency and reduce the computational cost of building cluster models has become an important issue. To address this problem, this paper proposes a visual perception evaluation model used to assess the weights of buildings based on multi-factor considerations to determine the order of building simplification, and weights the vertex importance for the classical QEM algorithm to redefine the collapsing cost of the edges, which achieves the purpose of reducing the complexity of the model while maintaining the visual quality. Experimental results show that the algorithm can significantly reduce the model rendering time and computational cost while maintaining the visual quality.
随着三维建筑群模型在城市规划、可视化等领域的广泛应用,如何提高建筑群模型的渲染效率、降低计算成本已成为一个重要课题。针对这一问题,本文提出了一种基于多因素考虑的视觉感知评估模型,用于评估建筑物的权重,确定建筑物简化的顺序,并对经典 QEM 算法的顶点重要性进行加权,重新定义边缘的折叠成本,达到了在保持视觉质量的前提下降低模型复杂度的目的。实验结果表明,该算法可以在保证视觉质量的前提下显著减少模型渲染时间和计算成本。
{"title":"Research on the simplification of building complex model under multi-factor constraints","authors":"Haoyuan Bai, Kelong Yang, Shunhua Liao","doi":"10.1117/12.3014388","DOIUrl":"https://doi.org/10.1117/12.3014388","url":null,"abstract":"With the wide application of 3D building cluster models in urban planning, visualization and other fields, how to improve the rendering efficiency and reduce the computational cost of building cluster models has become an important issue. To address this problem, this paper proposes a visual perception evaluation model used to assess the weights of buildings based on multi-factor considerations to determine the order of building simplification, and weights the vertex importance for the classical QEM algorithm to redefine the collapsing cost of the edges, which achieves the purpose of reducing the complexity of the model while maintaining the visual quality. Experimental results show that the algorithm can significantly reduce the model rendering time and computational cost while maintaining the visual quality.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 9","pages":"129691G - 129691G-6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGB-D visual SLAM for point association local edge features 针对点关联局部边缘特征的 RGB-D 视觉 SLAM
Hongtu Li, Fang Wang, Yunjiang Zhang
Aiming at the difficulty of point feature matching in 3D reconstruction to meet the tracking requirements of weakly textured scenes, this paper proposes a visual SLAM algorithm based on grid method combining points with edge features. In the tracking thread, a method based on grid method is proposed to evaluate the feature quality of points. The textures of external environment are judged according to ORB feature description, and the information of Canny edge features of weakly textured mesh is added to improve the positioning accuracy. In the local mapping thread, the joint feature points pose and map points are iteratively optimized to improve the convergence rate of the algorithm. The simulation results show that the proposed algorithm has a good location and tracking effects in the weak texture scene.
针对三维重建中点特征匹配难以满足弱纹理场景跟踪要求的问题,本文提出了一种基于网格法的视觉 SLAM 算法,将点与边缘特征相结合。在跟踪线程中,提出了一种基于网格法的点特征质量评估方法。根据 ORB 特征描述对外部环境的纹理进行判断,并加入弱纹理网格的 Canny 边缘特征信息,以提高定位精度。在局部映射线程中,对联合特征点姿态和映射点进行迭代优化,以提高算法的收敛速度。仿真结果表明,所提出的算法在弱纹理场景中具有良好的定位和跟踪效果。
{"title":"RGB-D visual SLAM for point association local edge features","authors":"Hongtu Li, Fang Wang, Yunjiang Zhang","doi":"10.1117/12.3014358","DOIUrl":"https://doi.org/10.1117/12.3014358","url":null,"abstract":"Aiming at the difficulty of point feature matching in 3D reconstruction to meet the tracking requirements of weakly textured scenes, this paper proposes a visual SLAM algorithm based on grid method combining points with edge features. In the tracking thread, a method based on grid method is proposed to evaluate the feature quality of points. The textures of external environment are judged according to ORB feature description, and the information of Canny edge features of weakly textured mesh is added to improve the positioning accuracy. In the local mapping thread, the joint feature points pose and map points are iteratively optimized to improve the convergence rate of the algorithm. The simulation results show that the proposed algorithm has a good location and tracking effects in the weak texture scene.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 23","pages":"129692N - 129692N-5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of customer electricity usage anomalies based on random matrix theory 基于随机矩阵理论识别用户用电异常情况
Shuo Zhou, Qihui Wang
A detection algorithm of maximum and minimum eigenvalues based on random matrix theory is proposed for the problem of abnormal detection of customer electricity consumption. Firstly, the data source matrix is constructed by time alignment and superimposed Gaussian white noise, and the sliding window method is used to obtain the window data indicating the operation status at each moment; secondly, the window data are standardized, feature extraction and other operations are performed, and the difference and the sum of the maximum and minimum eigenvalues are compared to construct the feature detection indexes and thresholds; finally, the algorithm is studied and verified by simulation. The results show that the algorithm does not depend on any model, can analyze the operation status of the system more comprehensively and adequately, and realizes the effective detection of abnormal data
针对用户用电异常检测问题,提出了一种基于随机矩阵理论的最大最小特征值检测算法。首先,通过时间对齐和叠加高斯白噪声构建数据源矩阵,并利用滑动窗口法得到表示各时刻运行状态的窗口数据;其次,对窗口数据进行标准化处理,并进行特征提取等操作,比较最大特征值和最小特征值之差和,构建特征检测指标和阈值;最后,对算法进行仿真研究和验证。结果表明,该算法不依赖于任何模型,能更全面、更充分地分析系统的运行状况,实现对异常数据的有效检测。
{"title":"Identification of customer electricity usage anomalies based on random matrix theory","authors":"Shuo Zhou, Qihui Wang","doi":"10.1117/12.3014405","DOIUrl":"https://doi.org/10.1117/12.3014405","url":null,"abstract":"A detection algorithm of maximum and minimum eigenvalues based on random matrix theory is proposed for the problem of abnormal detection of customer electricity consumption. Firstly, the data source matrix is constructed by time alignment and superimposed Gaussian white noise, and the sliding window method is used to obtain the window data indicating the operation status at each moment; secondly, the window data are standardized, feature extraction and other operations are performed, and the difference and the sum of the maximum and minimum eigenvalues are compared to construct the feature detection indexes and thresholds; finally, the algorithm is studied and verified by simulation. The results show that the algorithm does not depend on any model, can analyze the operation status of the system more comprehensively and adequately, and realizes the effective detection of abnormal data","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 6","pages":"129692M - 129692M-8"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Box-driven coarse-grained segmentation for stroke rehabilitation scenarios 针对中风康复场景的盒式驱动粗粒度分割技术
Yiming Fan, Yunjia Liu, Xiaofeng Lu
For complex stroke rehabilitation scenarios, visual algorithms, such as motion recognition or video understanding, find it challenging to focus on patient areas with slow motion amplitude and pay more attention to targets with drastic changes in light flow. Therefore, it can provide critical perspectives and adequate information for the above visual tasks using a semantic segmentation algorithm to capture the patient's area from the captured image. Currently, the weakly supervised segmentation algorithm based on bounding boxes tends to utilize existing image classification methods. They can perform secondary processing on the internal images of boxes to obtain larger areas of pseudo-label information. In order to avoid the redundancy caused by algorithm concatenation, this paper proposes an end-to-end weakly supervised segmentation algorithm. In this method, a U-shaped residual module with variable depth is designed to capture the deep semantic features of images, and its output is integrated into the target matrix of the NCut problem in the form of blocks. Then, the region of the target is indicated by solving the sub-minimum eigenvector of the generalized eigensystem, and the segmentation is realized. We conducted experiments on the PASCAL VOC 2012 dataset, and the proposed method achieved 67.7% mIoU. On the private dataset, we compared the proposed method with similar algorithms, which can segment the target area more intensively
对于复杂的中风康复场景,运动识别或视频理解等视觉算法在关注运动幅度较慢的患者区域时会遇到困难,而对于光流变化剧烈的目标则会更加关注。因此,利用语义分割算法从捕获的图像中捕捉患者区域,可为上述视觉任务提供关键视角和充足信息。目前,基于边界框的弱监督分割算法倾向于利用现有的图像分类方法。它们可以对方框内部图像进行二次处理,以获取更大区域的伪标签信息。为了避免算法串联带来的冗余,本文提出了一种端到端的弱监督分割算法。在该方法中,设计了一个深度可变的 U 型残差模块来捕捉图像的深层语义特征,并将其输出以块的形式集成到 NCut 问题的目标矩阵中。然后,通过求解广义特征系统的次最小特征向量来指示目标区域,并实现分割。我们在 PASCAL VOC 2012 数据集上进行了实验,所提出的方法达到了 67.7% 的 mIoU。在私人数据集上,我们将提出的方法与同类算法进行了比较,发现后者能更集中地分割目标区域
{"title":"Box-driven coarse-grained segmentation for stroke rehabilitation scenarios","authors":"Yiming Fan, Yunjia Liu, Xiaofeng Lu","doi":"10.1117/12.3014426","DOIUrl":"https://doi.org/10.1117/12.3014426","url":null,"abstract":"For complex stroke rehabilitation scenarios, visual algorithms, such as motion recognition or video understanding, find it challenging to focus on patient areas with slow motion amplitude and pay more attention to targets with drastic changes in light flow. Therefore, it can provide critical perspectives and adequate information for the above visual tasks using a semantic segmentation algorithm to capture the patient's area from the captured image. Currently, the weakly supervised segmentation algorithm based on bounding boxes tends to utilize existing image classification methods. They can perform secondary processing on the internal images of boxes to obtain larger areas of pseudo-label information. In order to avoid the redundancy caused by algorithm concatenation, this paper proposes an end-to-end weakly supervised segmentation algorithm. In this method, a U-shaped residual module with variable depth is designed to capture the deep semantic features of images, and its output is integrated into the target matrix of the NCut problem in the form of blocks. Then, the region of the target is indicated by solving the sub-minimum eigenvector of the generalized eigensystem, and the segmentation is realized. We conducted experiments on the PASCAL VOC 2012 dataset, and the proposed method achieved 67.7% mIoU. On the private dataset, we compared the proposed method with similar algorithms, which can segment the target area more intensively","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 3","pages":"129692D - 129692D-7"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139640401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1