Pub Date : 2024-04-10eCollection Date: 2024-01-01DOI: 10.3389/finsc.2024.1376011
Sophie Laurie, Leah Ainslie, Sharon Mitchell, Juliano Morimoto
Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, Musca domestica. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.
{"title":"Turmeric shortens lifespan in houseflies.","authors":"Sophie Laurie, Leah Ainslie, Sharon Mitchell, Juliano Morimoto","doi":"10.3389/finsc.2024.1376011","DOIUrl":"https://doi.org/10.3389/finsc.2024.1376011","url":null,"abstract":"<p><p>Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, <i>Musca domestica</i>. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1376011"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09eCollection Date: 2024-01-01DOI: 10.3389/finsc.2024.1374325
Farwa Sajadi, Jean-Paul V Paluzzi
The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate Itp and Itp-l expression profiles in the mosquito, Aedes aegypti, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both AedaeItp and AedaeItp-l revealed distinct enrichment patterns in adults, with AedaeItp expressed in the brain and AedaeItp-l expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of AedaeITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, AedaeITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of AedaeItp and AedaeItp-l levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of AedaeItp caused an increase in urine excretion, while knockdown of both AedaeItp and AedaeItp-l reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies AedaeITP and AedaeITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, A. aegypti.
{"title":"Molecular characterization, localization, and physiological roles of ITP and ITP-L in the mosquito, <i>Aedes aegypti</i>.","authors":"Farwa Sajadi, Jean-Paul V Paluzzi","doi":"10.3389/finsc.2024.1374325","DOIUrl":"10.3389/finsc.2024.1374325","url":null,"abstract":"<p><p>The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate <i>Itp</i> and <i>Itp-l</i> expression profiles in the mosquito, <i>Aedes aegypti</i>, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both <i>AedaeItp</i> and <i>AedaeItp-l</i> revealed distinct enrichment patterns in adults, with <i>AedaeItp</i> expressed in the brain and <i>AedaeItp-l</i> expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of <i>Aedae</i>ITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, <i>Aedae</i>ITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of <i>AedaeItp</i> and <i>AedaeItp-l</i> levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of <i>AedaeItp</i> caused an increase in urine excretion, while knockdown of both <i>AedaeItp</i> and <i>AedaeItp-l</i> reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies <i>Aedae</i>ITP and <i>Aedae</i>ITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, <i>A. aegypti</i>.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1374325"},"PeriodicalIF":2.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11035804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04eCollection Date: 2024-01-01DOI: 10.3389/finsc.2024.1249103
Thu N M Nguyen, Amanda Choo, Simon W Baxter
The sterile insect technique can suppress and eliminate population outbreaks of the Australian horticultural pest, Bactrocera tryoni, the Queensland fruit fly. Sterile males mate with wild females that produce inviable embryos, causing population suppression or elimination. Current sterile insect releases are mixed sex, as the efficient removal of unrequired factory-reared females is not yet possible. In this paper, we assessed the known Drosophila melanogaster temperature-sensitive embryonic lethal alleles shibire (G268D, shits1) and RNA polymerase II 215 (R977C, RpII215ts) for potential use in developing B. tryoni genetic sexing strains (GSS) for the conditional removal of females. Complementation tests in D. melanogaster wild-type or temperature-sensitive genetic backgrounds were performed using the GAL4-UAS transgene expression system. A B. tryoni wild-type shibire isoform partially rescued Drosophila temperature lethality at 29°C by improving survivorship to pupation, while expressing B. tryoni shits1 failed to rescue the lethality, supporting a temperature-sensitive phenotype. Expression of the B. tryoni RpII215 wild-type protein rescued the lethality of D. melanogaster RpII215ts flies at 29°C. Overexpressing the B. tryoni RpII215ts allele in the D. melanogaster wild-type background unexpectedly produced a dominant lethal phenotype at 29°C. The B. tryoni shibire and RpII215 wild-type alleles were able to compensate, to varying degrees, for the function of the D. melanogaster temperature-sensitive proteins, supporting functional conservation across species. Shibire and RpII215 hold potential for developing insect strains that can selectively kill using elevated temperatures; however, alleles with milder effects than shits1 will need to be considered.
昆虫不育技术可以抑制和消灭澳大利亚园艺害虫昆士兰果蝇(Bactrocera tryoni)的种群爆发。不育雄虫与野生雌虫交配,产生不能存活的胚胎,从而抑制或消灭虫群。目前释放的不育昆虫都是混性的,因为还无法有效清除工厂饲养的不育雌虫。在本文中,我们评估了已知的黑腹果蝇对温度敏感的胚胎致死等位基因 shibire(G268D,shits1)和 RNA 聚合酶 II 215(R977C,RpII215ts)在开发 B. tryoni 基因性别株(GSS)中的潜在用途,以便有条件地去除雌性。利用 GAL4-UAS 转基因表达系统对 D. melanogaster 野生型或温度敏感型遗传背景进行了互补试验。B. tryoni野生型shibire异构体通过提高成蛹存活率部分挽救了果蝇在29°C下的温度致死性,而表达B. tryoni shits1则未能挽救致死性,支持温度敏感表型。表达 B. tryoni RpII215 野生型蛋白可挽救黑腹滨蝇 RpII215ts 在 29°C 的致死率。在D. melanogaster野生型背景下,过表达B. tryoni RpII215ts等位基因意外地在29°C条件下产生了显性致死表型。B. tryoni shibire和RpII215野生型等位基因能够在不同程度上补偿D. melanogaster温度敏感蛋白的功能,支持跨物种的功能保护。Shibire 和 RpII215 有潜力开发出能在高温下选择性致死的昆虫品系;不过,还需要考虑比 shits1 作用更温和的等位基因。
{"title":"Conservation of <i>shibire</i> and <i>RpII215</i> temperature-sensitive lethal mutations between <i>Drosophila</i> and <i>Bactrocera tryoni</i>.","authors":"Thu N M Nguyen, Amanda Choo, Simon W Baxter","doi":"10.3389/finsc.2024.1249103","DOIUrl":"10.3389/finsc.2024.1249103","url":null,"abstract":"<p><p>The sterile insect technique can suppress and eliminate population outbreaks of the Australian horticultural pest, <i>Bactrocera tryoni</i>, the Queensland fruit fly. Sterile males mate with wild females that produce inviable embryos, causing population suppression or elimination. Current sterile insect releases are mixed sex, as the efficient removal of unrequired factory-reared females is not yet possible. In this paper, we assessed the known <i>Drosophila melanogaster</i> temperature-sensitive embryonic lethal alleles <i>shibire</i> (G268D, <i>shi<sup>ts1</sup></i>) and <i>RNA polymerase II 215</i> (R977C, <i>RpII215<sup>ts</sup></i>) for potential use in developing <i>B. tryoni</i> genetic sexing strains (GSS) for the conditional removal of females. Complementation tests in <i>D. melanogaster</i> wild-type or temperature-sensitive genetic backgrounds were performed using the GAL4-UAS transgene expression system. A <i>B. tryoni</i> wild-type <i>shibire</i> isoform partially rescued <i>Drosophila</i> temperature lethality at 29°C by improving survivorship to pupation, while expressing <i>B. tryoni shi<sup>ts1</sup></i> failed to rescue the lethality, supporting a temperature-sensitive phenotype. Expression of the <i>B. tryoni RpII215</i> wild-type protein rescued the lethality of <i>D. melanogaster RpII215<sup>ts</sup></i> flies at 29°C. Overexpressing the <i>B. tryoni RpII215<sup>ts</sup></i> allele in the <i>D. melanogaster</i> wild-type background unexpectedly produced a dominant lethal phenotype at 29°C. The <i>B. tryoni shibire</i> and <i>RpII215</i> wild-type alleles were able to compensate, to varying degrees, for the function of the <i>D. melanogaster</i> temperature-sensitive proteins, supporting functional conservation across species. <i>Shibire</i> and <i>RpII215</i> hold potential for developing insect strains that can selectively kill using elevated temperatures; however, alleles with milder effects than <i>shi<sup>ts1</sup></i> will need to be considered.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1249103"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioassays were conducted under controlled conditions to determine the response of Spodoptera frugiperda (J. E. Smith) larvae fed with corn materials expressing Bacillus thuringiensis (Bt) insecticidal endotoxins: (1) VT Double Pro® (VT2P) expressing Cry1A.105-Cry2Ab2 proteins and (2) VT Triple Pro® (VT3P) expressing Cry1A.105-Cry2Ab2-Cry3Bb1 proteins. The parameters assessed were: (i) mortality rate, and (ii) growth inhibition (GI) with respect to the control. To conduct this study, larvae were collected from commercial non-Bt corn fields, in four agricultural sub-regions in Colombia, between 2018 and 2020. Fifty-two populations were assessed from the field and neonate larvae from each of the populations were used for the bioassays. The study found that mortality rates in the regions for larvae fed with VT2P corn ranged from 95.1 to 100.0%, with a growth inhibition (%GI) higher than 76.0%. Similarly, mortality rate for larvae fed with VT3P corn were between 91.4 and 100.0%, with a %GI above 74.0%. The population collected in Agua Blanca (Espinal, Tolima; Colombia) in 2020, showed the lowest mortality rate of 53.2% and a %GI of 73.5%, with respect to the control. The population that exhibited the lowest %GI was collected in 2018 in Agua Blanca (Espinal, Tolima, Colombia) with a 30.2%, growth inhibition, with respect to the control. In recent years, the use of plant tissue to monitor susceptibility to fall armyworm has proven to be useful in the resistance management program for corn in Colombia determining that the FAW populations are still susceptible to Bt proteins contained in VT2P and VT3P.
{"title":"Impact of Bt corn expressing <i>Bacillus thuringiensis</i> Berliner insecticidal proteins on the growth and survival of <i>Spodoptera frugiperda</i> larvae in Colombia.","authors":"Jairo Rodriguez-Chalarca, Sandra J Valencia, Alejandra Rivas-Cano, Francisco Santos-González, Diana Patricia Romero","doi":"10.3389/finsc.2024.1268092","DOIUrl":"10.3389/finsc.2024.1268092","url":null,"abstract":"<p><p>Bioassays were conducted under controlled conditions to determine the response of <i>Spodoptera frugiperda</i> (J. E. Smith) larvae fed with corn materials expressing <i>Bacillus thuringiensis</i> (Bt) insecticidal endotoxins: (1) VT Double Pro<sup>®</sup> (VT2P) expressing Cry1A.105-Cry2Ab2 proteins and (2) VT Triple Pro<sup>®</sup> (VT3P) expressing Cry1A.105-Cry2Ab2-Cry3Bb1 proteins. The parameters assessed were: (i) mortality rate, and (ii) growth inhibition (GI) with respect to the control. To conduct this study, larvae were collected from commercial non-Bt corn fields, in four agricultural sub-regions in Colombia, between 2018 and 2020. Fifty-two populations were assessed from the field and neonate larvae from each of the populations were used for the bioassays. The study found that mortality rates in the regions for larvae fed with VT2P corn ranged from 95.1 to 100.0%, with a growth inhibition (%GI) higher than 76.0%. Similarly, mortality rate for larvae fed with VT3P corn were between 91.4 and 100.0%, with a %GI above 74.0%. The population collected in Agua Blanca (Espinal, Tolima; Colombia) in 2020, showed the lowest mortality rate of 53.2% and a %GI of 73.5%, with respect to the control. The population that exhibited the lowest %GI was collected in 2018 in Agua Blanca (Espinal, Tolima, Colombia) with a 30.2%, growth inhibition, with respect to the control. In recent years, the use of plant tissue to monitor susceptibility to fall armyworm has proven to be useful in the resistance management program for corn in Colombia determining that the FAW populations are still susceptible to Bt proteins contained in VT2P and VT3P.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1268092"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23eCollection Date: 2024-01-01DOI: 10.3389/finsc.2024.1339143
Dario Trujillo, Thiago Mastrangelo, Consuelo Estevez de Jensen, Jose Carlos Verle Rodrigues, Roger Lawrie, Steven E Massey
Helicoverpa armigera, the cotton bollworm moth, is one of the world's most important crop pests, and is spreading throughout the New World from its original range in the Old World. In Brazil, invasive H. armigera has been reported to hybridize with local populations of Helicoverpa zea. The correct identification of H. armigera-H. zea hybrids is important in understanding the origin, spread and future outlook for New World regions that are affected by outbreaks, given that hybridization can potentially facilitate H. zea pesticide resistance and host plant range via introgression of H. armigera genes. Here, we present a genome admixture analysis of high quality genome sequences generated from two H. armigera-H. zea F1 hybrids generated in two different labs. Our admixture pipeline predicts 48.8% and 48.9% H. armigera for the two F1 hybrids, confirming its accuracy. Genome sequences from five H. zea and one H. armigera that were generated as part of the study show no evidence of hybridization. Interestingly, we show that four H. zea genomes generated from a previous study are predicted to possess a proportion of H. armigera genetic material. Using unsupervised clustering to identify non-hybridized H. armigera and H. zea genomes, 8511 ancestry informative markers (AIMs) were identified. Their relative frequencies are consistent with a minor H. armigera component in the four genomes, however its origin remains to be established. We show that the size and quality of genomic reference datasets are critical for accurate hybridization prediction. Consequently, we discuss potential pitfalls in genome admixture analysis of H. armigera-H. zea hybrids, and suggest measures that will improve such analyses.
棉铃虫(Helicoverpa armigera)是世界上最重要的农作物害虫之一,正在从旧大陆的原产地向新大陆蔓延。据报道,在巴西,入侵的 H. armigera 与当地的 Helicoverpa zea 种群杂交。鉴于杂交可能会通过 H. armigera 基因的导入促进 H. zea 的杀虫剂抗性和寄主植物范围,正确鉴定 H. armigera-H. zea 杂交种对于了解受疫情影响的新大陆地区的起源、传播和未来前景非常重要。在此,我们对两个不同实验室产生的两个 H. armigera-H. zea F1 杂交种的高质量基因组序列进行了基因组混杂分析。我们的混杂分析管道预测这两个 F1 杂交种的 H. armigera 基因含量分别为 48.8% 和 48.9%,证实了其准确性。研究中生成的 5 个 H. zea 和 1 个 H. armigera 的基因组序列没有显示杂交的证据。有趣的是,我们发现在之前的研究中生成的四个 H. zea 基因组中含有一定比例的 H. armigera 遗传物质。利用无监督聚类来识别未杂交的 H. armigera 和 H. zea 基因组,共鉴定出 8511 个祖先信息标记(AIMs)。这些标记的相对频率与四个基因组中 H. armigera 的次要成分一致,但其来源仍有待确定。我们的研究表明,基因组参考数据集的大小和质量对于准确的杂交预测至关重要。因此,我们讨论了对 H. armigera-H. zea 杂交种进行基因组混杂分析的潜在误区,并提出了改进此类分析的措施。
{"title":"Accurate identification of <i>Helicoverpa armigera-Helicoverpa zea</i> hybrids using genome admixture analysis: implications for genomic surveillance.","authors":"Dario Trujillo, Thiago Mastrangelo, Consuelo Estevez de Jensen, Jose Carlos Verle Rodrigues, Roger Lawrie, Steven E Massey","doi":"10.3389/finsc.2024.1339143","DOIUrl":"10.3389/finsc.2024.1339143","url":null,"abstract":"<p><p><i>Helicoverpa armigera</i>, the cotton bollworm moth, is one of the world's most important crop pests, and is spreading throughout the New World from its original range in the Old World. In Brazil, invasive <i>H. armigera</i> has been reported to hybridize with local populations of <i>Helicoverpa zea</i>. The correct identification of <i>H. armigera-H. zea</i> hybrids is important in understanding the origin, spread and future outlook for New World regions that are affected by outbreaks, given that hybridization can potentially facilitate <i>H. zea</i> pesticide resistance and host plant range via introgression of <i>H. armigera</i> genes. Here, we present a genome admixture analysis of high quality genome sequences generated from two <i>H. armigera-H. zea</i> F1 hybrids generated in two different labs. Our admixture pipeline predicts 48.8% and 48.9% <i>H. armigera</i> for the two F1 hybrids, confirming its accuracy. Genome sequences from five <i>H. zea</i> and one <i>H. armigera</i> that were generated as part of the study show no evidence of hybridization. Interestingly, we show that four <i>H. zea</i> genomes generated from a previous study are predicted to possess a proportion of <i>H. armigera</i> genetic material. Using unsupervised clustering to identify non-hybridized <i>H. armigera</i> and <i>H. zea</i> genomes, 8511 ancestry informative markers (AIMs) were identified. Their relative frequencies are consistent with a minor <i>H. armigera</i> component in the four genomes, however its origin remains to be established. We show that the size and quality of genomic reference datasets are critical for accurate hybridization prediction. Consequently, we discuss potential pitfalls in genome admixture analysis of <i>H. armigera-H. zea</i> hybrids, and suggest measures that will improve such analyses.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1339143"},"PeriodicalIF":2.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16eCollection Date: 2024-01-01DOI: 10.3389/finsc.2024.1343089
Rakesh K Seth, Priya Yadav, Stuart E Reynolds
[This corrects the article DOI: 10.3389/finsc.2023.1198252.].
[此处更正了文章 DOI:10.3389/finsc.2023.1198252]。
{"title":"Corrigendum: Dichotomous sperm in Lepidopteran insects: a biorational target for pest management.","authors":"Rakesh K Seth, Priya Yadav, Stuart E Reynolds","doi":"10.3389/finsc.2024.1343089","DOIUrl":"https://doi.org/10.3389/finsc.2024.1343089","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/finsc.2023.1198252.].</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1343089"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Current status of honey bee genetic and breeding programs: progress and perspectives.","authors":"María Alejandra Palacio, Ernesto Guzman-Novoa, Alejandra Carla Scannapieco, Agostina Giacobino, Fanny Mondet","doi":"10.3389/finsc.2024.1365665","DOIUrl":"https://doi.org/10.3389/finsc.2024.1365665","url":null,"abstract":"","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1365665"},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12eCollection Date: 2023-01-01DOI: 10.3389/finsc.2023.1360167
Adam Sychla, Nathan R Feltman, William D Hutchison, Michael J Smanski
[This corrects the article DOI: 10.3389/finsc.2022.1063789.].
[此处更正了文章 DOI:10.3389/finsc.2022.1063789]。
{"title":"Corrigendum: Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive <i>Drosophila suzukii</i>.","authors":"Adam Sychla, Nathan R Feltman, William D Hutchison, Michael J Smanski","doi":"10.3389/finsc.2023.1360167","DOIUrl":"https://doi.org/10.3389/finsc.2023.1360167","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/finsc.2022.1063789.].</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"3 ","pages":"1360167"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}