首页 > 最新文献

Manufacturing Review最新文献

英文 中文
Fabrication of equiatomic FeCo alloy parts with high magnetic properties by fields activated sintering 磁场激活烧结制备高磁性等原子FeCo合金零件
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022001
B. Zhou, Yezhou Yang, Y. Qin, Gang Yang, Mingxia Wu
Electrical field activated sintering technology combined with micro-forming (Micro-FAST), as a new rapid powder sintering/forming method, is used to fabricate FeCo alloy parts. The successfully prepared FeCo parts have a high saturation of 214.11 emu/g and a low coercivity of 16 Oe, and these values are 20% and 10% higher than that of commercially available FeCoV alloy parts on the saturation and coercivity respectively. During the sintering process, the high current application shortened the densification time and enhanced the uniformity of the microstructure significantly. The grain sizes of FeCo alloys were in a range of 5–6 µm, and good isotropy was also shown. The low angle grain boundary (LAGB) accounted for more than 30% and the low angle misorientation accounted for more than 30% of the sample parts. Furthermore, the formation of the nano B2 phase was promoted during the Micro-FAST, and the size of the B2 phase was about 5 nm. The coherent interface between α and B2 was conducive for reducing the coercivity. As a consequence, the outstanding microstructure formed by Micro-FAST makes the FeCo alloys have high saturation and low coercivity.
电场激活烧结结合微成形技术(Micro-FAST)是一种新型的粉末快速烧结/成形方法,用于制造FeCo合金零件。成功制备的FeCo合金零件具有214.11 emu/g的高饱和度和16 Oe的低矫顽力,分别比市售的FeCo合金零件的饱和度和矫顽力高20%和10%。在烧结过程中,大电流的施加缩短了致密化时间,显著提高了组织的均匀性。FeCo合金的晶粒尺寸在5 ~ 6µm范围内,具有良好的各向同性。低角度晶界(LAGB)和低角度取向错占样品零件的30%以上。此外,在Micro-FAST过程中促进了纳米B2相的形成,其尺寸约为5 nm。α和B2之间的相干界面有利于降低矫顽力。因此,Micro-FAST形成的优异的微观组织使FeCo合金具有高饱和度和低矫顽力。
{"title":"Fabrication of equiatomic FeCo alloy parts with high magnetic properties by fields activated sintering","authors":"B. Zhou, Yezhou Yang, Y. Qin, Gang Yang, Mingxia Wu","doi":"10.1051/mfreview/2022001","DOIUrl":"https://doi.org/10.1051/mfreview/2022001","url":null,"abstract":"Electrical field activated sintering technology combined with micro-forming (Micro-FAST), as a new rapid powder sintering/forming method, is used to fabricate FeCo alloy parts. The successfully prepared FeCo parts have a high saturation of 214.11 emu/g and a low coercivity of 16 Oe, and these values are 20% and 10% higher than that of commercially available FeCoV alloy parts on the saturation and coercivity respectively. During the sintering process, the high current application shortened the densification time and enhanced the uniformity of the microstructure significantly. The grain sizes of FeCo alloys were in a range of 5–6 µm, and good isotropy was also shown. The low angle grain boundary (LAGB) accounted for more than 30% and the low angle misorientation accounted for more than 30% of the sample parts. Furthermore, the formation of the nano B2 phase was promoted during the Micro-FAST, and the size of the B2 phase was about 5 nm. The coherent interface between α and B2 was conducive for reducing the coercivity. As a consequence, the outstanding microstructure formed by Micro-FAST makes the FeCo alloys have high saturation and low coercivity.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of vibration singularity analysis, stochastic tool wear, and GPR-MOPSO hybrid algorithm to monitor and optimise power consumption in high-speed milling 应用振动奇异性分析、刀具随机磨损和GPR-MOPSO混合算法监测和优化高速铣削能耗
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022012
D. Hoang Tien, Tran Duc Quy, Thoa Pham Thi Thieu, N. D. Trinh
Power consumption in manufacturing direct affects production costs and the environment. Therefore, the process of evaluating and researching power consumption in the machining process is very important. During high-speed milling, the power consumption varie`s due to tool wear and radial deviation. Therefore, a new model power consumption optimization is proposed based on cutting mode factors taking into account tool wear and radial deviation. In the existing power consumption models, studies on the effects of radial deviation and tool wear have not been thoroughly investigated. Stochastic tool wears established during high-speed milling is established in combination with the cutting force analysis model and wavelet singularity vibration point analysis. The nonlinear processes due to stochastic tool wear and cutting edge geometry were considered in the model. To optimize power consumption and establish a model for the real-time prediction of power consumption, a new GPR–MOPSO hybrid algorithm was developed based on Gaussian process regression (GPR) and multi-objective particle swarm optimizations (MOPSO). In order to verify the feasibility proposed monitoring and optimization model, experimental processes high-speed milling have been established. Results showed that the presented improvement model will reduce power consumption by 20.38% compared with manufacturer manuals chosen process parameters.
制造业的电力消耗直接影响到生产成本和环境。因此,对机械加工过程中的功耗进行评估和研究是非常重要的。在高速铣削过程中,由于刀具磨损和径向偏差,功率消耗会发生变化。为此,提出了一种考虑刀具磨损和径向偏差的基于切削方式因素的模型功耗优化方法。在现有的功率消耗模型中,没有对径向偏差和刀具磨损的影响进行深入的研究。结合切削力分析模型和小波奇异振动点分析,建立了高速铣削过程中刀具的随机磨损。模型考虑了刀具随机磨损和刃口几何等非线性过程。为了优化电力消耗,建立电力消耗实时预测模型,提出了一种基于高斯过程回归(GPR)和多目标粒子群优化(MOPSO)的GPR - MOPSO混合算法。为了验证所提出的监测和优化模型的可行性,建立了高速铣削实验流程。结果表明,该改进模型与厂商手册中选择的工艺参数相比,能耗降低20.38%。
{"title":"Application of vibration singularity analysis, stochastic tool wear, and GPR-MOPSO hybrid algorithm to monitor and optimise power consumption in high-speed milling","authors":"D. Hoang Tien, Tran Duc Quy, Thoa Pham Thi Thieu, N. D. Trinh","doi":"10.1051/mfreview/2022012","DOIUrl":"https://doi.org/10.1051/mfreview/2022012","url":null,"abstract":"Power consumption in manufacturing direct affects production costs and the environment. Therefore, the process of evaluating and researching power consumption in the machining process is very important. During high-speed milling, the power consumption varie`s due to tool wear and radial deviation. Therefore, a new model power consumption optimization is proposed based on cutting mode factors taking into account tool wear and radial deviation. In the existing power consumption models, studies on the effects of radial deviation and tool wear have not been thoroughly investigated. Stochastic tool wears established during high-speed milling is established in combination with the cutting force analysis model and wavelet singularity vibration point analysis. The nonlinear processes due to stochastic tool wear and cutting edge geometry were considered in the model. To optimize power consumption and establish a model for the real-time prediction of power consumption, a new GPR–MOPSO hybrid algorithm was developed based on Gaussian process regression (GPR) and multi-objective particle swarm optimizations (MOPSO). In order to verify the feasibility proposed monitoring and optimization model, experimental processes high-speed milling have been established. Results showed that the presented improvement model will reduce power consumption by 20.38% compared with manufacturer manuals chosen process parameters.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimization of FSW parameters of AA6061-6 wt.% SiC composite plates aa6061 - 6wt FSW参数优化% SiC复合板
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022032
Venkatesh B.N., Umamaheshwar Hebbal, Siddappa P.N., K. S., Nagaraja T.K.
AA6061-SiC composites are the most preferred materials for applications in the automobile and aerospace sector due to their superior properties. The FSW process is one of the novel solid states joining processes that overcome almost all the difficulties of the fusion welding process because the process that operates well below the melting point of the metals to be joined, consumes less energy, environment-friendly, and versatile, no shielding gas or filler metal is used. The welding parameters such as tool rotational speed, axial force, and tool pin profile play a major role in deciding the joint strength and hardness of the weld zone. Taguchi method was employed in this study to scrutinize the impact of welding processing factors, including rotational, speed, axial load, and pin profile on ultimate tensile strength, microhardness of weld zone. The results reveal that the welded joints produced at 750 rpm of tool rotational speed, the axial load of 6 kN using a square pin tool profile that exhibits higher UTS. The Vickers's hardness of AA6061-6 wt.% SiC composites was found to be superior at tool rotational speed of 900 rpm, the axial force of 6kN using cylindrical tool pin. The ANOVA Findings based on Vickers's hardness are tool profile: 53.84%, tool rotational speed: 20.16%, and axial force: 21.32%.
AA6061-SiC复合材料由于其优越的性能,是汽车和航空航天领域应用的首选材料。FSW工艺是一种新型的固态连接工艺,它克服了熔焊工艺的几乎所有困难,因为该工艺的工作温度低于被连接金属的熔点,能耗低,环境友好,用途广泛,不使用保护气体或填充金属。刀具转速、轴向力、刀销轮廓等焊接参数是决定焊接区接头强度和硬度的主要因素。本研究采用田口法考察了旋转、速度、轴向载荷、销形等焊接工艺因素对焊缝区极限抗拉强度、显微硬度的影响。结果表明,在刀具转速为750转/分、轴向载荷为6 kN时,采用方销型刀具的焊接接头具有较高的UTS。维氏硬度为aa6061 - 6wt。在刀具转速为900转/分,轴向力为6kN的圆柱形刀销下,SiC复合材料的性能更优。基于维氏硬度的方差分析结果为:刀具外形为53.84%,刀具转速为20.16%,轴向力为21.32%。
{"title":"Optimization of FSW parameters of AA6061-6 wt.% SiC composite plates","authors":"Venkatesh B.N., Umamaheshwar Hebbal, Siddappa P.N., K. S., Nagaraja T.K.","doi":"10.1051/mfreview/2022032","DOIUrl":"https://doi.org/10.1051/mfreview/2022032","url":null,"abstract":"AA6061-SiC composites are the most preferred materials for applications in the automobile and aerospace sector due to their superior properties. The FSW process is one of the novel solid states joining processes that overcome almost all the difficulties of the fusion welding process because the process that operates well below the melting point of the metals to be joined, consumes less energy, environment-friendly, and versatile, no shielding gas or filler metal is used. The welding parameters such as tool rotational speed, axial force, and tool pin profile play a major role in deciding the joint strength and hardness of the weld zone. Taguchi method was employed in this study to scrutinize the impact of welding processing factors, including rotational, speed, axial load, and pin profile on ultimate tensile strength, microhardness of weld zone. The results reveal that the welded joints produced at 750 rpm of tool rotational speed, the axial load of 6 kN using a square pin tool profile that exhibits higher UTS. The Vickers's hardness of AA6061-6 wt.% SiC composites was found to be superior at tool rotational speed of 900 rpm, the axial force of 6kN using cylindrical tool pin. The ANOVA Findings based on Vickers's hardness are tool profile: 53.84%, tool rotational speed: 20.16%, and axial force: 21.32%.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spider web approach hardness validation of peak aged Al6061/SiC/h-BN composite and related mechanical characterization 峰值时效Al6061/SiC/h-BN复合材料的蜘蛛网法硬度验证及力学性能表征
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022021
Shivaprakash Y.M., Gurumurthy B.M., P. Hiremath, Sathyashankara Sharma, Sowrabh B.S.
Current work focusses on stir cast Al6061 based composites with SiC (3, 6, 9 wt.%) and h-BN (1, 2, 3 wt.%) as reinforcements and subjected to heat treatments followed by mechanical characterization. Quality level of composites is confirmed from reinforcement distribution and hardness uniformity in castings after homogenization. The castings were further subjected to peak aging and hardness data is refined for accuracy using Spider web approach. Due to lack in the reinforcement spreadout, especially higher volume quantity of h-BN, the peak hardness of Al6061/9 wt.% SiC/3 wt.% h-BN as estimated by Spider web approach is less than the recorded value. The Minitab result is in line with that of experimentally supported Spider web approach. Due to the result of nonuniform dispersivity, beyond the optimum quantity of reinforcement content, fracture surface resulted coarse mirror facets with lower tensile and wear properties. 2 wt.% h-BN quantity with 6 wt.% SiC in the composite is regarded as the optimum quantity of reinforcement, resulted excellent tensile strength with least ductility among the family and is at par with hardness variation trend. It is found that optimum quantity of solid lubricant h-BN in the composite resulted excellent wear resistance even at higher normal loads.
目前的工作主要集中在以SiC (3,6,9 wt.%)和h-BN (1,2,3 wt.%)为增强材料的搅拌铸造Al6061基复合材料上,并对其进行热处理,然后进行力学表征。通过铸件均质后的强化分布和硬度均匀性来确定复合材料的质量水平。进一步对铸件进行峰时效处理,并采用蜘蛛网法对硬度数据进行精细化。由于增强铺展不足,特别是h-BN的体积量较高,al6061的峰值硬度为9wt。% SiC/3 wt。通过蜘蛛网法估算的% h-BN小于记录值。Minitab的结果与实验支持的蜘蛛网方法的结果一致。由于分散性不均匀,在超出最佳补强量的情况下,断口表面形成粗糙的镜面,拉伸性能和磨损性能下降。2 wt。% h-BN数量为6 wt。复合材料中SiC含量为最佳增强量,具有优异的抗拉强度和最低的延展性,与硬度变化趋势一致。结果表明,添加适量的固体润滑剂h-BN可使复合材料在较高的正常载荷下仍具有良好的耐磨性。
{"title":"Spider web approach hardness validation of peak aged Al6061/SiC/h-BN composite and related mechanical characterization","authors":"Shivaprakash Y.M., Gurumurthy B.M., P. Hiremath, Sathyashankara Sharma, Sowrabh B.S.","doi":"10.1051/mfreview/2022021","DOIUrl":"https://doi.org/10.1051/mfreview/2022021","url":null,"abstract":"Current work focusses on stir cast Al6061 based composites with SiC (3, 6, 9 wt.%) and h-BN (1, 2, 3 wt.%) as reinforcements and subjected to heat treatments followed by mechanical characterization. Quality level of composites is confirmed from reinforcement distribution and hardness uniformity in castings after homogenization. The castings were further subjected to peak aging and hardness data is refined for accuracy using Spider web approach. Due to lack in the reinforcement spreadout, especially higher volume quantity of h-BN, the peak hardness of Al6061/9 wt.% SiC/3 wt.% h-BN as estimated by Spider web approach is less than the recorded value. The Minitab result is in line with that of experimentally supported Spider web approach. Due to the result of nonuniform dispersivity, beyond the optimum quantity of reinforcement content, fracture surface resulted coarse mirror facets with lower tensile and wear properties. 2 wt.% h-BN quantity with 6 wt.% SiC in the composite is regarded as the optimum quantity of reinforcement, resulted excellent tensile strength with least ductility among the family and is at par with hardness variation trend. It is found that optimum quantity of solid lubricant h-BN in the composite resulted excellent wear resistance even at higher normal loads.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57965041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using fault detection and classification techniques for machine breakdown reduction of the HGA process caused by the slider loss defect 采用故障检测和分类技术减少了HGA工艺中滑块损耗缺陷引起的机器故障
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022020
T. Wanglomklang, Phathan Chommaungpuck, K. Chamniprasart, J. Srisertpol
Fault Detection and Classification (FDC) based on Machine Learning (ML) approach was used to detect and classify mount head fault in the slider attachment process which causes the machine alarm 71 to occur which leads to 2% of machine downtime. This paper has focused on the use of classified pixel surface of mount head with fault difference conditions including Healthy, Fault I, Fault II, and Fault III to detect and diagnose mount head before a vacuum leak. The Artificial Neural Network (ANN) algorithm was a proposed classification model and has to be evaluated before using in the real processes. Three features of mount head surface pixel, i.e., inner, outer, and overall areas were investigated and used as model training data set. The experiment result indicates that the classification using the ANN model with three features performed with an accuracy of 94.3%. According to the result, it was found that the reliability of the production processes of FDC technique has increased as a result of the reduction of machine downtime by 1.886%.
基于机器学习(ML)方法的故障检测和分类(FDC)用于检测和分类滑块附着过程中的安装头故障,该故障导致机器报警71发生,导致机器停机时间为2%。本文主要研究了利用健康、故障一、故障二、故障三种故障差分条件下的挂载头分类像素面,在真空泄漏前对挂载头进行检测和诊断。人工神经网络(ANN)算法是一种被提出的分类模型,在应用于实际过程之前必须进行评估。研究了mount head表面像素的内、外、整体三个特征,并将其作为模型训练数据集。实验结果表明,采用具有三个特征的人工神经网络模型进行分类,准确率达到94.3%。根据结果,发现FDC技术的生产过程的可靠性提高了,因为机器停机时间减少了1.886%。
{"title":"Using fault detection and classification techniques for machine breakdown reduction of the HGA process caused by the slider loss defect","authors":"T. Wanglomklang, Phathan Chommaungpuck, K. Chamniprasart, J. Srisertpol","doi":"10.1051/mfreview/2022020","DOIUrl":"https://doi.org/10.1051/mfreview/2022020","url":null,"abstract":"Fault Detection and Classification (FDC) based on Machine Learning (ML) approach was used to detect and classify mount head fault in the slider attachment process which causes the machine alarm 71 to occur which leads to 2% of machine downtime. This paper has focused on the use of classified pixel surface of mount head with fault difference conditions including Healthy, Fault I, Fault II, and Fault III to detect and diagnose mount head before a vacuum leak. The Artificial Neural Network (ANN) algorithm was a proposed classification model and has to be evaluated before using in the real processes. Three features of mount head surface pixel, i.e., inner, outer, and overall areas were investigated and used as model training data set. The experiment result indicates that the classification using the ANN model with three features performed with an accuracy of 94.3%. According to the result, it was found that the reliability of the production processes of FDC technique has increased as a result of the reduction of machine downtime by 1.886%.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-criteria decision making under the MARCOS method and the weighting methods: applied to milling, grinding and turning processes 基于MARCOS方法和加权法的多准则决策:应用于铣削、磨削和车削加工
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022003
D. Duc Trung
The efficiency of cutting machining methods is generally evaluated through many parameters such as surface roughness, material removal rate, cutting force, etc. A machining process is considered highly efficient when it meets the requirements for these parameters, such as ensuring small surface roughness, high material removal rate, or small cutting force, etc. However, for each specific machining condition, sometimes the objective functions give contradictory requirements. In this case, it is necessary to implement multi-criteria decision making, i.e., make a decision to ensure harmonization of all required objectives. In this paper, a multi-criteria decision-making study is presented for three common machining methods: milling, grinding, and turning. In each machining method, the weights of the criteria were determined by four different methods, including Equal weight, ROC weight, RS weight and Entropy weight. The MARCOS method was applied for multi-criteria decision making. The best alternative was found to be the same as the weights were determined using the Equal weight and Entropy weight methods. In the remaining two weighting methods, the best alternative found depends on the order where the criteria were arranged, not these methods themselves. Direction for further research has been suggested in this study as well.
切削加工方法的效率一般通过许多参数来评价,如表面粗糙度、材料去除率、切削力等。当加工过程满足这些参数的要求时,例如确保小的表面粗糙度,高的材料去除率或小的切削力等,则认为加工过程是高效的。然而,对于每一种具体的加工条件,目标函数有时会给出相互矛盾的要求。在这种情况下,有必要实施多标准决策,即做出决策以确保所有所需目标的协调一致。本文研究了铣削、磨削和车削三种常用加工方法的多准则决策问题。在每种加工方法中,通过四种不同的方法确定准则的权重,包括Equal weight、ROC weight、RS weight和Entropy weight。采用MARCOS方法进行多准则决策。采用等权法和熵权法确定了各指标的权重,得出了最佳方案。在剩下的两种加权方法中,找到的最佳替代方法取决于标准的排列顺序,而不是这些方法本身。本研究还提出了进一步研究的方向。
{"title":"Multi-criteria decision making under the MARCOS method and the weighting methods: applied to milling, grinding and turning processes","authors":"D. Duc Trung","doi":"10.1051/mfreview/2022003","DOIUrl":"https://doi.org/10.1051/mfreview/2022003","url":null,"abstract":"The efficiency of cutting machining methods is generally evaluated through many parameters such as surface roughness, material removal rate, cutting force, etc. A machining process is considered highly efficient when it meets the requirements for these parameters, such as ensuring small surface roughness, high material removal rate, or small cutting force, etc. However, for each specific machining condition, sometimes the objective functions give contradictory requirements. In this case, it is necessary to implement multi-criteria decision making, i.e., make a decision to ensure harmonization of all required objectives. In this paper, a multi-criteria decision-making study is presented for three common machining methods: milling, grinding, and turning. In each machining method, the weights of the criteria were determined by four different methods, including Equal weight, ROC weight, RS weight and Entropy weight. The MARCOS method was applied for multi-criteria decision making. The best alternative was found to be the same as the weights were determined using the Equal weight and Entropy weight methods. In the remaining two weighting methods, the best alternative found depends on the order where the criteria were arranged, not these methods themselves. Direction for further research has been suggested in this study as well.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Development of data normalization methods for multi-criteria decision making: applying for MARCOS method 多准则决策中数据规范化方法的发展:MARCOS方法的应用
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022019
D. Trung
The purpose of the data normalization is to transfer the quantities with different dimensions to the same dimensionless form. The multi-criteria decision-making (MCDM) methods that require identifying the weight for each criterion, so the data normalization should be performed. In this study, five distinct data normalization methods were used in combination with a multi-criteria decision-making method (MARCOS method). All five of these data normalization methods were performed in combining with the MARCOS method and applied in three different cases. The number of solutions and the criteria in each case were different. Two different weighting methods were also used in each situation. After defining the most suitable data normalization methods in combining with the MARCOS method, this study proposed two new data normalization methods. The results show that solution rank is likely stable. The works in the future were mentioned in the last section of this article as well.
数据归一化的目的是将不同维数的量转化为相同的无量纲形式。多标准决策(MCDM)方法需要确定每个标准的权重,因此需要进行数据归一化处理。在本研究中,五种不同的数据归一化方法与多准则决策方法(MARCOS方法)相结合。所有这五种数据归一化方法都与MARCOS方法结合使用,并应用于三种不同的情况。每种情况下的解决方案的数量和标准是不同的。在每种情况下,还使用了两种不同的加权方法。本研究结合MARCOS方法确定了最适合的数据归一化方法后,提出了两种新的数据归一化方法。结果表明,解阶可能是稳定的。本文的最后一节也提到了今后的工作。
{"title":"Development of data normalization methods for multi-criteria decision making: applying for MARCOS method","authors":"D. Trung","doi":"10.1051/mfreview/2022019","DOIUrl":"https://doi.org/10.1051/mfreview/2022019","url":null,"abstract":"The purpose of the data normalization is to transfer the quantities with different dimensions to the same dimensionless form. The multi-criteria decision-making (MCDM) methods that require identifying the weight for each criterion, so the data normalization should be performed. In this study, five distinct data normalization methods were used in combination with a multi-criteria decision-making method (MARCOS method). All five of these data normalization methods were performed in combining with the MARCOS method and applied in three different cases. The number of solutions and the criteria in each case were different. Two different weighting methods were also used in each situation. After defining the most suitable data normalization methods in combining with the MARCOS method, this study proposed two new data normalization methods. The results show that solution rank is likely stable. The works in the future were mentioned in the last section of this article as well.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"12 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology 利用定向能沉积技术回收金属间钛铝化物航空发动机部件
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022024
Balichakra Mallikarjuna, E. Reutzel
Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.
与镍基高温合金相比,钛铝(TiAl)合金是一种金属间化合物,具有密度低、熔点高、抗氧化性和耐腐蚀性好等优点。因此,这些合金被用于航空发动机部件,如涡轮叶片、燃油喷射器、径向扩散器、发散襟翼等。在运行过程中,航空发动机部件在氧化和腐蚀环境中承受高热负荷,导致磨损和其他材料损坏。由于交货期和费用较长,可能不希望更换整个部件。在这种情况下,维修和翻新可能是回收TiAl零件的最佳选择。不幸的是,目前批准的修复技术还不能用于基于TiAl的组件。基于增材制造(AM)的定向能量沉积(DED)可以作为一种选择,帮助修复和恢复昂贵的航空发动机部件。在这项工作中,回顾了利用DED技术在局部修复受损钛基航空航天部件的努力。更换整个TiAl部分是不可取的,因为它是昂贵的。DED是一种很有前途的技术,用于生产、修理、返工和大修(MRO)损坏的零件。考虑到飞机工业的高质量标准,DED修复的TiAl零件获得认证对于其未来在飞机上的使用非常重要。但是,目前还没有关于TiAl修复件认证的标准报道。案例研究表明,人们正在考虑将DED用于TiAl零件的修复。将加工、修理和精加工能力集成在一台机器上的混合技术是提高修理效率的一种有吸引力的实施策略。综述表明,基于d的修复技术的开发和应用的研究是有限的,这表明进一步的研究是非常必要的。
{"title":"Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology","authors":"Balichakra Mallikarjuna, E. Reutzel","doi":"10.1051/mfreview/2022024","DOIUrl":"https://doi.org/10.1051/mfreview/2022024","url":null,"abstract":"Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing - A Review 增强颗粒在搅拌摩擦法制备铝基复合材料中的应用综述
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022025
Karthik Adiga, M. Herbert, S. Rao, A. Shettigar
Composite materials possess advantages like high strength and stiffness with low density and prove their essentiality in the aviation sector. Aluminium metal matrix composites (AMMC) find applications in automotive, aircraft, and marine industries due to their high specific strength, superior wear resistance, and lower thermal expansion. The fabrication of composites using the liquid phase at high temperature leads to the formation of intermetallics and unwanted phases. Friction Stir Processing (FSP) is a novel technique of composite fabrication, with temperature below the melting point of the matrix, achieving good grain refinement. Many researchers reported enhancement of mechanical, microstructure, and tribological properties of AMMC produced by the FSP route. The FSP parameters such as tool rotational speed, tool traverse speeds are found to be having greater impact on uniform dispersion of particles. It is observed that the properties such as tensile strength, hardness, wear and corrosion resistance, are altered by the FSP processes, and the scale of the alterations is influenced significantly by the processing and tool parameters. The strengthening mechanisms responsible for such alterations are discussed in this paper. Advanced engineering materials like shape memory alloys, high entropy alloys, MAX phase materials and intermetallics as reinforcement material are also discussed. Challenges and opportunities in FSP to manufacture AMMC are summarized, providing great benefit to researchers working on FSP technique.
复合材料具有高强度、高刚度、低密度等优点,证明了其在航空领域的重要性。铝金属基复合材料(AMMC)因其高比强度、优异的耐磨性和较低的热膨胀而在汽车、飞机和船舶工业中得到应用。利用液相在高温下制备复合材料会导致金属间化合物和不需要的相的形成。搅拌摩擦加工(FSP)是一种新型的复合材料加工技术,在温度低于基体熔点的条件下,实现了良好的晶粒细化。许多研究人员报道了FSP工艺生产的AMMC的力学、微观结构和摩擦学性能的增强。发现刀具转速、刀具横移速度等FSP参数对颗粒均匀分散有较大影响。结果表明,FSP工艺对合金的抗拉强度、硬度、耐磨性和耐蚀性等性能产生了影响,且影响程度受工艺参数和刀具参数的显著影响。本文讨论了造成这种变化的强化机制。还讨论了形状记忆合金、高熵合金、MAX相材料和金属间化合物等先进工程材料作为增强材料。总结了FSP制造AMMC面临的挑战和机遇,为FSP技术的研究提供了有益的参考。
{"title":"Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing - A Review","authors":"Karthik Adiga, M. Herbert, S. Rao, A. Shettigar","doi":"10.1051/mfreview/2022025","DOIUrl":"https://doi.org/10.1051/mfreview/2022025","url":null,"abstract":"Composite materials possess advantages like high strength and stiffness with low density and prove their essentiality in the aviation sector. Aluminium metal matrix composites (AMMC) find applications in automotive, aircraft, and marine industries due to their high specific strength, superior wear resistance, and lower thermal expansion. The fabrication of composites using the liquid phase at high temperature leads to the formation of intermetallics and unwanted phases. Friction Stir Processing (FSP) is a novel technique of composite fabrication, with temperature below the melting point of the matrix, achieving good grain refinement. Many researchers reported enhancement of mechanical, microstructure, and tribological properties of AMMC produced by the FSP route. The FSP parameters such as tool rotational speed, tool traverse speeds are found to be having greater impact on uniform dispersion of particles. It is observed that the properties such as tensile strength, hardness, wear and corrosion resistance, are altered by the FSP processes, and the scale of the alterations is influenced significantly by the processing and tool parameters. The strengthening mechanisms responsible for such alterations are discussed in this paper. Advanced engineering materials like shape memory alloys, high entropy alloys, MAX phase materials and intermetallics as reinforcement material are also discussed. Challenges and opportunities in FSP to manufacture AMMC are summarized, providing great benefit to researchers working on FSP technique.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nanoparticulate reinforced composites and their application to additively manufactured TI6AL4V for use in the aerospace sector 纳米颗粒增强复合材料及其在航空航天领域增材制造TI6AL4V中的应用
IF 2.5 Q3 ENGINEERING, MANUFACTURING Pub Date : 2022-01-01 DOI: 10.1051/mfreview/2022027
M. Mashabela, M. Maringa, T. Dzogbewu
Metal matrix composites possess good mechanical properties at high temperatures making them good candidates for components that operate in conditions of high temperatures where they have to withstand static creep and cyclic fatigue loads. The mechanical properties of Ti6Al4V including hardness, strength, modulus of elasticity, and wear resistance can be enhanced with nano particulates to obtain lighter and stronger materials that can function at elevated temperatures. This paper starts with a brief background on composite materials and then turns to analysis of carbon nanotubes, titanium carbide, silicon carbide, titanium boride, titanium diboride, and titanium nitride nano particulate materials as candidates for the reinforcement for Ti6Al4V to form composites for aerospace applications. Based on a comparison of their physical properties of melting point, coefficient of thermal expansion, density and mechanical properties of strength, Young's modulus and hardness all obtained from literature, the paper narrows down on multiwalled carbon nanotubes and titanium diboride as the preferred nano composites for this use. Presently, experimental work is under way to determine optimum process parameters for additively built carbon nanotube/Ti6Al4V composites that will be used to build three-dimensional specimens for testing to determine their mechanical properties. This is expected to clarify the value of incorporating the carbon nanotubes in the Ti6Al4V matrix with respect to selected mechanical properties. Future work is envisaged on additively build titanium diboride/Ti6Al4V composites to the same end and in order to determine which of the two nano particles is best in enhancing the mechanical properties of Ti6Al4V.
金属基复合材料在高温下具有良好的机械性能,使其成为在高温条件下运行的部件的良好候选者,这些部件必须承受静态蠕变和循环疲劳载荷。纳米颗粒可以增强Ti6Al4V的力学性能,包括硬度、强度、弹性模量和耐磨性,从而获得更轻、更强的材料,可以在高温下发挥作用。本文首先简要介绍了复合材料的背景,然后分析了碳纳米管、碳化钛、碳化硅、硼化钛、二硼化钛和氮化钛纳米颗粒材料作为Ti6Al4V增强材料的候选材料,以形成航空航天应用的复合材料。通过对其熔点、热膨胀系数、密度和强度、杨氏模量、硬度等物理性能的比较,本文确定了多壁碳纳米管和二硼化钛作为纳米复合材料的首选材料。目前,实验工作正在进行中,以确定增材制造碳纳米管/Ti6Al4V复合材料的最佳工艺参数,该复合材料将用于制造三维样品以测试其机械性能。这有望阐明在Ti6Al4V基体中加入碳纳米管对选择的机械性能的价值。未来的工作设想是通过添加构建二硼化钛/Ti6Al4V复合材料来达到相同的目的,并确定两种纳米颗粒中哪一种在增强Ti6Al4V的机械性能方面效果最好。
{"title":"Nanoparticulate reinforced composites and their application to additively manufactured TI6AL4V for use in the aerospace sector","authors":"M. Mashabela, M. Maringa, T. Dzogbewu","doi":"10.1051/mfreview/2022027","DOIUrl":"https://doi.org/10.1051/mfreview/2022027","url":null,"abstract":"Metal matrix composites possess good mechanical properties at high temperatures making them good candidates for components that operate in conditions of high temperatures where they have to withstand static creep and cyclic fatigue loads. The mechanical properties of Ti6Al4V including hardness, strength, modulus of elasticity, and wear resistance can be enhanced with nano particulates to obtain lighter and stronger materials that can function at elevated temperatures. This paper starts with a brief background on composite materials and then turns to analysis of carbon nanotubes, titanium carbide, silicon carbide, titanium boride, titanium diboride, and titanium nitride nano particulate materials as candidates for the reinforcement for Ti6Al4V to form composites for aerospace applications. Based on a comparison of their physical properties of melting point, coefficient of thermal expansion, density and mechanical properties of strength, Young's modulus and hardness all obtained from literature, the paper narrows down on multiwalled carbon nanotubes and titanium diboride as the preferred nano composites for this use. Presently, experimental work is under way to determine optimum process parameters for additively built carbon nanotube/Ti6Al4V composites that will be used to build three-dimensional specimens for testing to determine their mechanical properties. This is expected to clarify the value of incorporating the carbon nanotubes in the Ti6Al4V matrix with respect to selected mechanical properties. Future work is envisaged on additively build titanium diboride/Ti6Al4V composites to the same end and in order to determine which of the two nano particles is best in enhancing the mechanical properties of Ti6Al4V.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Manufacturing Review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1