The microstructure and mechanical properties of Al2214-8 wt.% of 500 nm sized B4C particles reinforced composites were studied in this study. By using a liquid metallurgical process, composites containing 8 wt.% of B4C in Al2214 alloy were created. To increase the wettability and dispersion of the composites, fortification particles were warmed to 300 °C and then added in groups of two into the vortex of liquid Al2214 alloy compound. ASTM standards were used to analyse the mechanical characteristics of Al2214 alloy and Al2214-8 wt.% of B4C composites. The distribution and presence of nano B4C particles in the Al2214 alloy matrix were confirmed by microstructural analysis using SEM and EDS. XRD patterns indicated the presence of the B4C phases in Al2214 alloy composites. The addition of 8 wt.% of B4C particles to Al2214 alloy improved its hardness, ultimate, yield, and compression strength. Furthermore, the presence of B4C particles reduced the ductility of the Al2214 alloy. The tested materials were subjected to tensile fractography to determine the various fracture mechanisms.
{"title":"Evaluation of mechanical behaviour and tensile failure analysis of 8 wt.% of nano B4C particles reinforced Al2214 alloy nano composites","authors":"Kumar Gopalan, Saravanan Rajabathar, Madeva Nagaral, Hemnath Raju Thippeswamy","doi":"10.1051/mfreview/2022029","DOIUrl":"https://doi.org/10.1051/mfreview/2022029","url":null,"abstract":"The microstructure and mechanical properties of Al2214-8 wt.% of 500 nm sized B4C particles reinforced composites were studied in this study. By using a liquid metallurgical process, composites containing 8 wt.% of B4C in Al2214 alloy were created. To increase the wettability and dispersion of the composites, fortification particles were warmed to 300 °C and then added in groups of two into the vortex of liquid Al2214 alloy compound. ASTM standards were used to analyse the mechanical characteristics of Al2214 alloy and Al2214-8 wt.% of B4C composites. The distribution and presence of nano B4C particles in the Al2214 alloy matrix were confirmed by microstructural analysis using SEM and EDS. XRD patterns indicated the presence of the B4C phases in Al2214 alloy composites. The addition of 8 wt.% of B4C particles to Al2214 alloy improved its hardness, ultimate, yield, and compression strength. Furthermore, the presence of B4C particles reduced the ductility of the Al2214 alloy. The tested materials were subjected to tensile fractography to determine the various fracture mechanisms.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022017
A. Vergnano, Emanuele Salvati, A. Magistrelli, Edoardo Brambilla, P. Veronesi, F. Leali
A die for Al alloy casting must be designed to achieve the expected quality levels. Moreover, the casting unit cost must be regarded as the objective function to be minimised. It can be expressed as a function of the quantity of materials and energy to be used, cycle time and equipment investment. This work compares the performance of the die with inserts manufactured using the usual 1.2343 steel with that of the innovative 1.2383. The latter is considered due to its enhanced thermal conductivity, despite being more expensive. Simulation experiments are designed to evaluate different die layouts. The quality design solutions are evaluated against the cost objective function in order to identify the optimal die choice. A case study on gravity die casting (GDC) of an AlSi7Mg0.3 engine head shows faster solidification dynamics when using 1.2383 instead of 1.2343 steel. This reduces the feeder volume, thus increasing the production yield and speeding up the cycle time with a leverage effect. The higher investment cost for the inserts is rapidly returned thanks to the reduction in variable costs. The Return On Investment (ROI) with the improved die in the new solution is short compared with the life of the die.
{"title":"A method for yield and cycle time improvements in Al alloy casting with enhanced conductivity steel for die construction","authors":"A. Vergnano, Emanuele Salvati, A. Magistrelli, Edoardo Brambilla, P. Veronesi, F. Leali","doi":"10.1051/mfreview/2022017","DOIUrl":"https://doi.org/10.1051/mfreview/2022017","url":null,"abstract":"A die for Al alloy casting must be designed to achieve the expected quality levels. Moreover, the casting unit cost must be regarded as the objective function to be minimised. It can be expressed as a function of the quantity of materials and energy to be used, cycle time and equipment investment. This work compares the performance of the die with inserts manufactured using the usual 1.2343 steel with that of the innovative 1.2383. The latter is considered due to its enhanced thermal conductivity, despite being more expensive. Simulation experiments are designed to evaluate different die layouts. The quality design solutions are evaluated against the cost objective function in order to identify the optimal die choice. A case study on gravity die casting (GDC) of an AlSi7Mg0.3 engine head shows faster solidification dynamics when using 1.2383 instead of 1.2343 steel. This reduces the feeder volume, thus increasing the production yield and speeding up the cycle time with a leverage effect. The higher investment cost for the inserts is rapidly returned thanks to the reduction in variable costs. The Return On Investment (ROI) with the improved die in the new solution is short compared with the life of the die.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"70 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022033
D. Klenam, O. S. Bamisaye, Iyanu Emmanuel Williams, J. W. van der Merwe, M. Bodunrin
Additive manufacturing (AM) technologies and advances made globally in medicine, construction, aerospace, and energy sectors are discussed. The paper further explores the current state of AM innovation and development landscape in Africa as a late comer to this area of smart manufacturing. Peer-reviewed and published literature were retrieved from Scopus database from 2005 to 2021 and analysed. In Africa, out of 500 published articles, South Africa has the highest research throughput, whereas about two-thirds of the continent is not actively participating in this burgeoning field. The main AM techniques most widely used are selective laser melting, fused deposition modelling, and direct energy deposition. Globally, there is an interplay of computational (machine learning and mechanistic models) and experimental approaches to understanding the physical metallurgy of AM techniques and processes. Though this trend is consistent with global practices, Africa lags the world in AM technologies, a niche that could leapfrog the manufacturing sector. Thus, Africa need to foster collaborative partnership within and globally to become an active global player in this industry.
{"title":"Global perspective and African outlook on additive manufacturing research − an overview","authors":"D. Klenam, O. S. Bamisaye, Iyanu Emmanuel Williams, J. W. van der Merwe, M. Bodunrin","doi":"10.1051/mfreview/2022033","DOIUrl":"https://doi.org/10.1051/mfreview/2022033","url":null,"abstract":"Additive manufacturing (AM) technologies and advances made globally in medicine, construction, aerospace, and energy sectors are discussed. The paper further explores the current state of AM innovation and development landscape in Africa as a late comer to this area of smart manufacturing. Peer-reviewed and published literature were retrieved from Scopus database from 2005 to 2021 and analysed. In Africa, out of 500 published articles, South Africa has the highest research throughput, whereas about two-thirds of the continent is not actively participating in this burgeoning field. The main AM techniques most widely used are selective laser melting, fused deposition modelling, and direct energy deposition. Globally, there is an interplay of computational (machine learning and mechanistic models) and experimental approaches to understanding the physical metallurgy of AM techniques and processes. Though this trend is consistent with global practices, Africa lags the world in AM technologies, a niche that could leapfrog the manufacturing sector. Thus, Africa need to foster collaborative partnership within and globally to become an active global player in this industry.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022015
Jinbo Li, Xiaohui Chen, Xiao Chen, Hao Liu, Xianlong Liu
A rectangular cup with a small radius at the bottom circular arc is a common sheet metal structure in aerospace components. However, when aluminum alloy plates are used for deep drawing of this type of rectangular cups, the wall thickness around the bottom circular arc is severely decreased. Hence, in this paper, locally-thickened plates were adopted for deep drawing of aluminum alloy rectangular cups with a relatively small radius at the bottom circular arc. The effect of thickening parameters of a locally-thickened plate on the radius at the bottom circular arc and the forming load was investigated by employing finite element simulations and deep drawing experiments. The results indicate that a smaller radius at the bottom circular arc is obtained by increasing the angle or reducing the thickness of the thickened convex rib of a plate. Moreover, the aforementioned is achieved when the side length of the thickened convex rib is equal to the punch width. The forming load is closely related to the thickening parameters of a locally-thickened plate. A small radius of 5 mm at the bottom circular arc was successfully obtained by optimizing the thickening parameters. Furthermore, the forming load during the deep drawing was significantly reduced.
{"title":"Deep drawing of a rectangular cup with a small radius at the bottom circular arc by employing a locally-thickened plate","authors":"Jinbo Li, Xiaohui Chen, Xiao Chen, Hao Liu, Xianlong Liu","doi":"10.1051/mfreview/2022015","DOIUrl":"https://doi.org/10.1051/mfreview/2022015","url":null,"abstract":"A rectangular cup with a small radius at the bottom circular arc is a common sheet metal structure in aerospace components. However, when aluminum alloy plates are used for deep drawing of this type of rectangular cups, the wall thickness around the bottom circular arc is severely decreased. Hence, in this paper, locally-thickened plates were adopted for deep drawing of aluminum alloy rectangular cups with a relatively small radius at the bottom circular arc. The effect of thickening parameters of a locally-thickened plate on the radius at the bottom circular arc and the forming load was investigated by employing finite element simulations and deep drawing experiments. The results indicate that a smaller radius at the bottom circular arc is obtained by increasing the angle or reducing the thickness of the thickened convex rib of a plate. Moreover, the aforementioned is achieved when the side length of the thickened convex rib is equal to the punch width. The forming load is closely related to the thickening parameters of a locally-thickened plate. A small radius of 5 mm at the bottom circular arc was successfully obtained by optimizing the thickening parameters. Furthermore, the forming load during the deep drawing was significantly reduced.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022010
N. H. Phan, N. Vu, S. Shirguppikar, N. T. Ly, N. C. Tam, B. Tai, Le Thi Phuong Thanh
In the present scenario, great effort is expended to improve the machining process by adopting multi-criteria decision making in electrical discharge machining (EDM). In this research article, an attempt was made to optimize the process parameters of EDM with Nickel Coated Aluminium Electrode for machining Titanium Alloy using Preference Selection Index (PSI). The experimental work were performed using Taguchi based L16 orthogonal to solve multi-objective optimization problem. The current (I), voltage (U) and pulse on time (Ton) were used as input response variables for investigation process while material removal rate (MRR) and tool wear rate (TWR) were selected as performance measures. The experimental results show that set of optimized parameters of the multi-objective optimization problem in EDM with nickel coated aluminium electrode could improve the machining with better surface measures with less deviation from the prediction. The combination between PSI and Taguchi method reduced and saved significantly the experimental time and cost and increased accuracy for optimization process.
{"title":"Multi-criteria decision making in electrical discharge machining with nickel coated aluminium electrode for titanium alloy using preferential selection index","authors":"N. H. Phan, N. Vu, S. Shirguppikar, N. T. Ly, N. C. Tam, B. Tai, Le Thi Phuong Thanh","doi":"10.1051/mfreview/2022010","DOIUrl":"https://doi.org/10.1051/mfreview/2022010","url":null,"abstract":"In the present scenario, great effort is expended to improve the machining process by adopting multi-criteria decision making in electrical discharge machining (EDM). In this research article, an attempt was made to optimize the process parameters of EDM with Nickel Coated Aluminium Electrode for machining Titanium Alloy using Preference Selection Index (PSI). The experimental work were performed using Taguchi based L16 orthogonal to solve multi-objective optimization problem. The current (I), voltage (U) and pulse on time (Ton) were used as input response variables for investigation process while material removal rate (MRR) and tool wear rate (TWR) were selected as performance measures. The experimental results show that set of optimized parameters of the multi-objective optimization problem in EDM with nickel coated aluminium electrode could improve the machining with better surface measures with less deviation from the prediction. The combination between PSI and Taguchi method reduced and saved significantly the experimental time and cost and increased accuracy for optimization process.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"44 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022008
Karthik S.R., Neelakanta V. Londe, R. Shetty, R. Nayak, Adithya Hedge
Growing demand for Stellite 6 alloys due to its attractive properties such as superior strength, toughness, wear resistance, fracture resistant characteristics, and their exceptional resistance to corrosion has made them applicable in industrial as well as commercial applications, such as aerospace industries, nuclear waste storage, automobile industries and surgical implantation. However, in spite of these applications, automotive part manufacturers mainly (Bearing Materials) are looking for a comprehensive study, such as mechanics of friction and the relationship between friction and wear. Hence in this paper, an attempt has been made to study the tribological behavior such as wear characterization and surface roughness of age hardened Stellite 6 alloys. The main objective of the research is to determine the favorable tribological conditions for improving wear resistant properties and surface roughness on age hardened Stellite 6 alloys. Hence two body wear study and surface roughness study during Wire Electric Discharge Machining (WEDM) of age hardened Stellite 6 alloys based on Analysis of Variance (ANOVA), Taguchi's Design of Experiment (TDOE), Response Surface Methodology(RSM) and Desirability Functional Analysis (DFA) have been used to achieve this goal. From the study it is observed that optimum values for improving hardness, wear and surface roughness values can be easily achieved with less time and cost by adopting the said techniques. •From microstructural observation, as the peak current increases there is larger amount of dendritic carbides and cracking of carbides due to high plastic deformation resulting in thermal softening of Stellite 6 alloy during wire electric discharge machining resulting in better surface roughness values. The second-order model for hardness, wear and surface roughness using response surface methodology can be adopted for predicting for hardness, wear and surface roughness in any experimental domain.
{"title":"Optimization and prediction of hardness, wear and surface roughness on age hardened stellite 6 alloys","authors":"Karthik S.R., Neelakanta V. Londe, R. Shetty, R. Nayak, Adithya Hedge","doi":"10.1051/mfreview/2022008","DOIUrl":"https://doi.org/10.1051/mfreview/2022008","url":null,"abstract":"Growing demand for Stellite 6 alloys due to its attractive properties such as superior strength, toughness, wear resistance, fracture resistant characteristics, and their exceptional resistance to corrosion has made them applicable in industrial as well as commercial applications, such as aerospace industries, nuclear waste storage, automobile industries and surgical implantation. However, in spite of these applications, automotive part manufacturers mainly (Bearing Materials) are looking for a comprehensive study, such as mechanics of friction and the relationship between friction and wear. Hence in this paper, an attempt has been made to study the tribological behavior such as wear characterization and surface roughness of age hardened Stellite 6 alloys. The main objective of the research is to determine the favorable tribological conditions for improving wear resistant properties and surface roughness on age hardened Stellite 6 alloys. Hence two body wear study and surface roughness study during Wire Electric Discharge Machining (WEDM) of age hardened Stellite 6 alloys based on Analysis of Variance (ANOVA), Taguchi's Design of Experiment (TDOE), Response Surface Methodology(RSM) and Desirability Functional Analysis (DFA) have been used to achieve this goal. From the study it is observed that optimum values for improving hardness, wear and surface roughness values can be easily achieved with less time and cost by adopting the said techniques. •From microstructural observation, as the peak current increases there is larger amount of dendritic carbides and cracking of carbides due to high plastic deformation resulting in thermal softening of Stellite 6 alloy during wire electric discharge machining resulting in better surface roughness values. The second-order model for hardness, wear and surface roughness using response surface methodology can be adopted for predicting for hardness, wear and surface roughness in any experimental domain.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022009
Siddesh Matti, B. Shivakumar, Madeva Nagaral, S. Shashidhar, P. N. Siddappa, V. Auradi
In the present research Al7075 alloy with 1, 3 and 5 varying weight percentages of flyash, 1, 2 and 3 varying wt.% of red mud along with constant 4 wt.% of mica particles composites were synthesized by stir casting technique. Thus prepared Al7075 alloy composites were subjected to the microstructural characterization using SEM and EDS. Mechanical properties were evaluated to know the impact of multi micro particles addition on the hardness, ultimate strength, yield strength, and ductility behavior of Al7075 alloy composites. Further, wear behavior of the prepared Al7075 alloy with mica, flyash and redmud composites were experimented using pin-on-disc apparatus by varying normal load and sliding velocity at constant 3000 m sliding distance. The improved mechanical properties were observed with the addition of micro scaled flyash, redmud and mica particles, further improvement was attained with the increasing weight percentage of flyash and red mud in the Al7075 matrix alloy. However, there was decrease in the ductility of the composites with an incorporation of hard micro particles in the soft Al matrix. Fractography and worn surface analysis were carried out to know the influence of micro particles on the tensile failure and wear surfaces of the composites.
{"title":"Mechanical and tribological behavior of flyash, red mud and mica particles reinforced Al7075 alloy hybrid metal composites","authors":"Siddesh Matti, B. Shivakumar, Madeva Nagaral, S. Shashidhar, P. N. Siddappa, V. Auradi","doi":"10.1051/mfreview/2022009","DOIUrl":"https://doi.org/10.1051/mfreview/2022009","url":null,"abstract":"In the present research Al7075 alloy with 1, 3 and 5 varying weight percentages of flyash, 1, 2 and 3 varying wt.% of red mud along with constant 4 wt.% of mica particles composites were synthesized by stir casting technique. Thus prepared Al7075 alloy composites were subjected to the microstructural characterization using SEM and EDS. Mechanical properties were evaluated to know the impact of multi micro particles addition on the hardness, ultimate strength, yield strength, and ductility behavior of Al7075 alloy composites. Further, wear behavior of the prepared Al7075 alloy with mica, flyash and redmud composites were experimented using pin-on-disc apparatus by varying normal load and sliding velocity at constant 3000 m sliding distance. The improved mechanical properties were observed with the addition of micro scaled flyash, redmud and mica particles, further improvement was attained with the increasing weight percentage of flyash and red mud in the Al7075 matrix alloy. However, there was decrease in the ductility of the composites with an incorporation of hard micro particles in the soft Al matrix. Fractography and worn surface analysis were carried out to know the influence of micro particles on the tensile failure and wear surfaces of the composites.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2021027
R. Shetty, Adithya Hegde
From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).
{"title":"Taguchi based fuzzy logic model for optimisation and prediction of surface roughness during AWJM of DRCUFP composites","authors":"R. Shetty, Adithya Hegde","doi":"10.1051/mfreview/2021027","DOIUrl":"https://doi.org/10.1051/mfreview/2021027","url":null,"abstract":"From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022016
D. Doreswamy, D. Sai Shreyas, Subraya Krishna Bhat, R. Rao
Wire electric discharge machining (WEDM) is one of the foremost methods which has been utilized for machining hard-to-cut materials like Titanium alloys. However, there is a need to optimize their important operating parameters to achieve maximum material removal rate (MRR). The present paper investigates the effect of control factors like current, pulse on time (Ton), pulse off time (Toff) on MRR of machining of Ti-6Al-4V alloy. The study showed that, increase in current from 2 A to 6 A results in a significant increase in MRR by 93.27% and increase in Ton from 20 μs to 35 μs improved the MRR by 7.98%, beyond which there was no improvement of MRR. The increase in Toff showed a counterproductive effect. Increase in Toff from 10 μs to 30 μs showed an almost linear decrease in MRR by 52.77%. Morphological study of the machined surface showed that cut surface consists of recast layer on which microcracks were present, and revealed the presence of globules, ridge-structured formations of recast layers and voids. In addition, a regression model was developed to predict the MRR with respect to the control factors, which showed a good prediction with an R2 value of 99.67%.
{"title":"Optimization of material removal rate and surface characterization of wire electric discharge machined Ti-6Al-4V alloy by response surface method","authors":"D. Doreswamy, D. Sai Shreyas, Subraya Krishna Bhat, R. Rao","doi":"10.1051/mfreview/2022016","DOIUrl":"https://doi.org/10.1051/mfreview/2022016","url":null,"abstract":"Wire electric discharge machining (WEDM) is one of the foremost methods which has been utilized for machining hard-to-cut materials like Titanium alloys. However, there is a need to optimize their important operating parameters to achieve maximum material removal rate (MRR). The present paper investigates the effect of control factors like current, pulse on time (Ton), pulse off time (Toff) on MRR of machining of Ti-6Al-4V alloy. The study showed that, increase in current from 2 A to 6 A results in a significant increase in MRR by 93.27% and increase in Ton from 20 μs to 35 μs improved the MRR by 7.98%, beyond which there was no improvement of MRR. The increase in Toff showed a counterproductive effect. Increase in Toff from 10 μs to 30 μs showed an almost linear decrease in MRR by 52.77%. Morphological study of the machined surface showed that cut surface consists of recast layer on which microcracks were present, and revealed the presence of globules, ridge-structured formations of recast layers and voids. In addition, a regression model was developed to predict the MRR with respect to the control factors, which showed a good prediction with an R2 value of 99.67%.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1051/mfreview/2022013
Nguyen Trinh Duy, D. Tien, P. T. K. Thoa
In this study, a naturally sourced cutting oil mixture using for the magnetorheological finishing (MRF) as an environmentally friendly carrier liquid. In addition, fuzzy grey relation analysis has been developed to predict and give optimal cutting parameters, the main factors affecting surface quality and material removal rate (MRR) identified. Experimental polishing procedures Ti-6Al-4V alloy were performed to confirm the availability of MRF models of the surface quality and MRR proposed. The fuzzy grey levels of elements to the polishing surface quality, namely the workpiece speed (nw), working distances (K), MRF carrier speed (nMRF) and feed rate (F), were 0.6983, 0.8057, 0.7818, and 0.7817, respectively. The analysis showed that the working distances (K) showed the most remarkable influence on the polishing effect, while the effect of workpiece speed (nw) was the least important. Microscopic observations significantly minimize scratches on the surface. This observation provides an excellent reference value for high surface quality and material removal rate when polishing Ti-6Al-4V alloys.
{"title":"A new environment-friendly magnetorheological finishing and fuzzy grey relation analysis in Ti-6Al-4V alloy polishing","authors":"Nguyen Trinh Duy, D. Tien, P. T. K. Thoa","doi":"10.1051/mfreview/2022013","DOIUrl":"https://doi.org/10.1051/mfreview/2022013","url":null,"abstract":"In this study, a naturally sourced cutting oil mixture using for the magnetorheological finishing (MRF) as an environmentally friendly carrier liquid. In addition, fuzzy grey relation analysis has been developed to predict and give optimal cutting parameters, the main factors affecting surface quality and material removal rate (MRR) identified. Experimental polishing procedures Ti-6Al-4V alloy were performed to confirm the availability of MRF models of the surface quality and MRR proposed. The fuzzy grey levels of elements to the polishing surface quality, namely the workpiece speed (nw), working distances (K), MRF carrier speed (nMRF) and feed rate (F), were 0.6983, 0.8057, 0.7818, and 0.7817, respectively. The analysis showed that the working distances (K) showed the most remarkable influence on the polishing effect, while the effect of workpiece speed (nw) was the least important. Microscopic observations significantly minimize scratches on the surface. This observation provides an excellent reference value for high surface quality and material removal rate when polishing Ti-6Al-4V alloys.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57964787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}