Pub Date : 2021-01-01DOI: 10.1016/j.ejco.2021.100009
Prashant Chintapalli
We address the combined problem of supplier (or vendor) selection and ordering decision when a buyer can choose to procure from multiple suppliers whose yields are uncertain and potentially correlated. We model this problem as a stochastic program with recourse in which the buyer purchases from the suppliers in the first period and, if needed, chooses to purchase from the spot market or from the suppliers with excess supply, whichever is beneficial, in the second period in order to meet the target procurement quantity. We solve the above problem using sample average approximation (SAA) technique that enables us to solve the problem easily in practice. We compare the performance of our solution with the certainty equivalent problem, which is practiced widely and which we use as the benchmark, to evaluate the efficacy of our approach. Next, we extend our model to incorporate buyer’s risk aversion with respect to the quantity procured. We reformulate the multi-sourcing problem as a mixed integer linear program (MILP) and adopt a statistical approach to account for buyer’s risk aversion. Thus, we design a simple computational technique that provides an optimal sourcing policy from a set of suppliers when each supplier’s yield is uncertain with a generic probability distribution.
{"title":"Multi-sourcing under supply uncertainty and Buyer's risk aversion","authors":"Prashant Chintapalli","doi":"10.1016/j.ejco.2021.100009","DOIUrl":"https://doi.org/10.1016/j.ejco.2021.100009","url":null,"abstract":"<div><p>We address the combined problem of supplier (or vendor) selection and ordering decision when a buyer can choose to procure from multiple suppliers whose yields are uncertain and potentially correlated. We model this problem as a stochastic program with recourse in which the buyer purchases from the suppliers in the first period and, if needed, chooses to purchase from the spot market or from the suppliers with excess supply, whichever is beneficial, in the second period in order to meet the target procurement quantity. We solve the above problem using <em>sample average approximation</em> (SAA) technique that enables us to solve the problem easily in practice. We compare the performance of our solution with the certainty equivalent problem, which is practiced widely and which we use as the benchmark, to evaluate the efficacy of our approach. Next, we extend our model to incorporate buyer’s risk aversion with respect to the quantity procured. We reformulate the multi-sourcing problem as a mixed integer linear program (MILP) and adopt a statistical approach to account for buyer’s risk aversion. Thus, we design a simple computational technique that provides an optimal sourcing policy from a set of suppliers when each supplier’s yield is uncertain with a generic probability distribution.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100009"},"PeriodicalIF":2.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91979863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/j.ejco.2021.100007
Thomas Kleinert , Martine Labbé , Ivana Ljubić , Martin Schmidt
Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980’s but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.
{"title":"A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization","authors":"Thomas Kleinert , Martine Labbé , Ivana Ljubić , Martin Schmidt","doi":"10.1016/j.ejco.2021.100007","DOIUrl":"https://doi.org/10.1016/j.ejco.2021.100007","url":null,"abstract":"<div><p>Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and practice. The scientific interest in computational bilevel optimization increased a lot over the last decade and is still growing. Independent of whether the bilevel problem itself contains integer variables or not, many state-of-the-art solution approaches for bilevel optimization make use of techniques that originate from mixed-integer programming. These techniques include branch-and-bound methods, cutting planes and, thus, branch-and-cut approaches, or problem-specific decomposition methods. In this survey article, we review bilevel-tailored approaches that exploit these mixed-integer programming techniques to solve bilevel optimization problems. To this end, we first consider bilevel problems with convex or, in particular, linear lower-level problems. The discussed solution methods in this field stem from original works from the 1980’s but, on the other hand, are still actively researched today. Second, we review modern algorithmic approaches to solve mixed-integer bilevel problems that contain integrality constraints in the lower level. Moreover, we also briefly discuss the area of mixed-integer nonlinear bilevel problems. Third, we devote some attention to more specific fields such as pricing or interdiction models that genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a list of open questions from the areas of algorithmic and computational bilevel optimization, which may lead to interesting future research that will further propel this fascinating and active field of research.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100007"},"PeriodicalIF":2.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92106930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/j.ejco.2020.100003
Franziska Theurich , Andreas Fischer , Guntram Scheithauer
An important aspect in railway maintenance management is the scheduling of tamping actions in which two aspects need to be considered: first, the reduction of travel costs for crews and machinery; and second, the reduction of time-dependent costs caused by bad track condition. We model the corresponding planning problem as a Vehicle Routing Problem with additional customer costs. Due to the particular objective function, this kind of Vehicle Routing Problem is harder to solve with conventional methods. Therefore, we develop a branch-and-bound approach based on a partition and permutation model. We present two branching strategies, the first appends one job at the end of a route in each branching step and the second includes one job inside a route in each branching step; and analyze their pros and cons. Furthermore, different lower bounds for the customer costs and the travel costs are defined and compared. The performance of the branch-and-bound method is analyzed and compared with a commercial solver.
{"title":"A branch-and-bound approach for a Vehicle Routing Problem with Customer Costs","authors":"Franziska Theurich , Andreas Fischer , Guntram Scheithauer","doi":"10.1016/j.ejco.2020.100003","DOIUrl":"10.1016/j.ejco.2020.100003","url":null,"abstract":"<div><p>An important aspect in railway maintenance management is the scheduling of tamping actions in which two aspects need to be considered: first, the reduction of travel costs for crews and machinery; and second, the reduction of time-dependent costs caused by bad track condition. We model the corresponding planning problem as a Vehicle Routing Problem with additional customer costs. Due to the particular objective function, this kind of Vehicle Routing Problem is harder to solve with conventional methods. Therefore, we develop a branch-and-bound approach based on a partition and permutation model. We present two branching strategies, the first appends one job at the end of a route in each branching step and the second includes one job inside a route in each branching step; and analyze their pros and cons. Furthermore, different lower bounds for the customer costs and the travel costs are defined and compared. The performance of the branch-and-bound method is analyzed and compared with a commercial solver.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100003"},"PeriodicalIF":2.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2020.100003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131364780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/j.ejco.2021.100014
Gabriele Eichfelder
The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some selected references for further reading. Primarily, the survey covers the progress in the development of algorithms. In particular, we discuss publicly available solvers and approaches for new problem classes such as non-convex and mixed integer problems. Moreover, bilevel optimization problems and the handling of uncertainties by robust approaches and their relation to set optimization are presented. In addition, we discuss why numerical approaches which do not use scalarization techniques are of interest.
{"title":"Twenty years of continuous multiobjective optimization in the twenty-first century","authors":"Gabriele Eichfelder","doi":"10.1016/j.ejco.2021.100014","DOIUrl":"10.1016/j.ejco.2021.100014","url":null,"abstract":"<div><p>The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some selected references for further reading. Primarily, the survey covers the progress in the development of algorithms. In particular, we discuss publicly available solvers and approaches for new problem classes such as non-convex and mixed integer problems. Moreover, bilevel optimization problems and the handling of uncertainties by robust approaches and their relation to set optimization are presented. In addition, we discuss why numerical approaches which do not use scalarization techniques are of interest.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100014"},"PeriodicalIF":2.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440621001416/pdfft?md5=4018e3f0c0f28ef259f7334bb0858cce&pid=1-s2.0-S2192440621001416-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128447971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/j.ejco.2021.100005
Ricardo M. Lima , Antonio J. Conejo , Loïc Giraldi , Olivier Le Maître , Ibrahim Hoteit , Omar M. Knio
In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the conditional value at risk is used to represent risk. A sample average approximation methodology is integrated with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This methodology provides a framework to understand and quantify the impact of the sample size on the variability of the results. The numerical results include an analysis of the computational performance of the methodology for two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample size is used, the solution obtained is close to the optimal one.
{"title":"Sample average approximation for risk-averse problems: A virtual power plant scheduling application","authors":"Ricardo M. Lima , Antonio J. Conejo , Loïc Giraldi , Olivier Le Maître , Ibrahim Hoteit , Omar M. Knio","doi":"10.1016/j.ejco.2021.100005","DOIUrl":"10.1016/j.ejco.2021.100005","url":null,"abstract":"<div><p>In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the conditional value at risk is used to represent risk. A sample average approximation methodology is integrated with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This methodology provides a framework to understand and quantify the impact of the sample size on the variability of the results. The numerical results include an analysis of the computational performance of the methodology for two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample size is used, the solution obtained is close to the optimal one.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100005"},"PeriodicalIF":2.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134173836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1007/s13675-020-00126-9
Diego Recalde , Ramiro Torres , Polo Vaca
In this work, a multi-constraint graph partitioning problem is introduced. The input is an undirected graph with costs on the edges and multiple weights on the nodes. The problem calls for a partition of the node set into a fixed number of clusters, such that each cluster satisfies a collection of node weight constraints, and the total cost of the edges whose end nodes are in the same cluster is minimized. It arises as a sub-problem of an integrated vehicle and pollster problem from a real-world application. Two integer programming formulations are provided, and several families of valid inequalities associated with the respective polyhedra are proved. An exact algorithm based on Branch & Bound and cutting planes is proposed, and it is tested on real-world instances.
{"title":"An exact approach for the multi-constraint graph partitioning problem","authors":"Diego Recalde , Ramiro Torres , Polo Vaca","doi":"10.1007/s13675-020-00126-9","DOIUrl":"10.1007/s13675-020-00126-9","url":null,"abstract":"<div><p>In this work, a multi-constraint graph partitioning problem is introduced. The input is an undirected graph with costs on the edges and multiple weights on the nodes. The problem calls for a partition of the node set into a fixed number of clusters, such that each cluster satisfies a collection of node weight constraints, and the total cost of the edges whose end nodes are in the same cluster is minimized. It arises as a sub-problem of an integrated vehicle and pollster problem from a real-world application. Two integer programming formulations are provided, and several families of valid inequalities associated with the respective polyhedra are proved. An exact algorithm based on Branch & Bound and cutting planes is proposed, and it is tested on real-world instances.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"8 3","pages":"Pages 289-308"},"PeriodicalIF":2.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13675-020-00126-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49298068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1007/s13675-020-00125-w
Ernst Althaus , Felix Rauterberg , Sarah Ziegler
In the classical Euclidean Steiner minimum tree (SMT) problem, we are given a set of points in the Euclidean plane and we are supposed to find the minimum length tree that connects all these points, allowing the addition of arbitrary additional points. We investigate the variant of the problem where the input is a set of line segments. We allow these segments to have length 0, i.e., they are points and hence we generalize the classical problem. Furthermore, they are allowed to intersect such that we can model polygonal input. As in the GeoSteiner approach of Juhl et al. (Math Program Comput 10(2):487–532, 2018) for the classical case, we use a two-phase approach where we construct a superset of so-called full components of an SMT in the first phase. We prove a structural theorem for these full components, which allows us to use almost the same GeoSteiner algorithm as in the classical SMT problem. The second phase, the selection of a minimal cost subset of constructed full components, is exactly the same as in GeoSteiner approach. Finally, we report some experimental results that show that our approach is more efficient than the approximate solution that is obtained by sampling the segments.
{"title":"Computing Euclidean Steiner trees over segments","authors":"Ernst Althaus , Felix Rauterberg , Sarah Ziegler","doi":"10.1007/s13675-020-00125-w","DOIUrl":"10.1007/s13675-020-00125-w","url":null,"abstract":"<div><p>In the classical Euclidean Steiner minimum tree (SMT) problem, we are given a set of points in the Euclidean plane and we are supposed to find the minimum length tree that connects all these points, allowing the addition of arbitrary additional points. We investigate the variant of the problem where the input is a set of line segments. We allow these segments to have length 0, i.e., they are points and hence we generalize the classical problem. Furthermore, they are allowed to intersect such that we can model polygonal input. As in the GeoSteiner approach of Juhl et al. (Math Program Comput 10(2):487–532, 2018) for the classical case, we use a two-phase approach where we construct a superset of so-called full components of an SMT in the first phase. We prove a structural theorem for these full components, which allows us to use almost the same GeoSteiner algorithm as in the classical SMT problem. The second phase, the selection of a minimal cost subset of constructed full components, is exactly the same as in GeoSteiner approach. Finally, we report some experimental results that show that our approach is more efficient than the approximate solution that is obtained by sampling the segments.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"8 3","pages":"Pages 309-325"},"PeriodicalIF":2.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13675-020-00125-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48047296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1007/s13675-020-00127-8
Heiner Ackermann , Erik Diessel
Integrated packing and sequence-optimization problems appear in many industrial applications. As an example of this type of problem, we consider the production of glued laminated timber (glulam) in sawmills: Wood beams must be packed into a sequence of pressing steps subject to packing constraints of the press and subject to sequencing constraints. In this paper, we present a three-stage approach for solving this hard optimization problem: Firstly, we identify alternative packings for small parts of an instance. Secondly, we choose an optimal subset of these packings by solving a set cover problem. Finally, we apply a sequencing algorithm in order to find an optimal order of the selected subsequences. For every level of the hierarchy, we present tailored algorithms, analyze their performance and illustrate the efficiency of the overall approach by a comprehensive numerical study.
{"title":"A hierarchical approach for solving an integrated packing and sequence-optimization problem in production of glued laminated timber","authors":"Heiner Ackermann , Erik Diessel","doi":"10.1007/s13675-020-00127-8","DOIUrl":"10.1007/s13675-020-00127-8","url":null,"abstract":"<div><p>Integrated packing and sequence-optimization problems appear in many industrial applications. As an example of this type of problem, we consider the production of glued laminated timber (glulam) in sawmills: Wood beams must be packed into a sequence of pressing steps subject to packing constraints of the press and subject to sequencing constraints. In this paper, we present a three-stage approach for solving this hard optimization problem: Firstly, we identify alternative packings for small parts of an instance. Secondly, we choose an optimal subset of these packings by solving a set cover problem. Finally, we apply a sequencing algorithm in order to find an optimal order of the selected subsequences. For every level of the hierarchy, we present tailored algorithms, analyze their performance and illustrate the efficiency of the overall approach by a comprehensive numerical study.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"8 3","pages":"Pages 263-288"},"PeriodicalIF":2.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13675-020-00127-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45235738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-01DOI: 10.1007/s13675-020-00129-6
Patrick Gemander , Wei-Kun Chen , Dieter Weninger , Leona Gottwald , Ambros Gleixner , Alexander Martin
In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolve techniques successfully is their speed. Hence, most methods inspect constraints or variables individually in order to guarantee linear complexity. In this paper, we present new hashing-based pairing mechanisms that help to overcome known performance limitations of more powerful presolve techniques that consider pairs of rows or columns. Additionally, we develop an enhancement to one of these presolve techniques by exploiting the presence of set-packing structures on binary variables in order to strengthen the resulting reductions without increasing runtime. We analyze the impact of these methods on the MIPLIB 2017 benchmark set based on an implementation in the MIP solver SCIP.
{"title":"Two-row and two-column mixed-integer presolve using hashing-based pairing methods","authors":"Patrick Gemander , Wei-Kun Chen , Dieter Weninger , Leona Gottwald , Ambros Gleixner , Alexander Martin","doi":"10.1007/s13675-020-00129-6","DOIUrl":"10.1007/s13675-020-00129-6","url":null,"abstract":"<div><p>In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolve techniques successfully is their speed. Hence, most methods inspect constraints or variables individually in order to guarantee linear complexity. In this paper, we present new hashing-based pairing mechanisms that help to overcome known performance limitations of more powerful presolve techniques that consider pairs of rows or columns. Additionally, we develop an enhancement to one of these presolve techniques by exploiting the presence of set-packing structures on binary variables in order to strengthen the resulting reductions without increasing runtime. We analyze the impact of these methods on the MIPLIB 2017 benchmark set based on an implementation in the MIP solver SCIP.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"8 3","pages":"Pages 205-240"},"PeriodicalIF":2.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13675-020-00129-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129533614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}