CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.
{"title":"CD47 (Cluster of Differentiation 47).","authors":"Sukhbir Kaur, Jeffrey S Isenberg, David D Roberts","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.</p>","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":"25 2","pages":"83-102"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547767/pdf/nihms-1651955.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39567120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuroblastoma is a clinically heterogenous pediatric cancer of the sympathetic nervous system that originates from neural crest cells. It is the most common extracranial solid tumor in childhood and prognosis ranges from spontaneous tumor regression to aggressive disease resistant to multimodal therapy. Prognosis depends on patient characteristics and tumor biology that determine risk classification. Advancements in therapy reductions are merited for low- and intermediate-risk neuroblastoma patients, who generally have excellent outcomes. Of the patients with high-risk disease, only 50% achieve long-term survival, and therapeutic advancements are needed. Over the past several decades, genomic features such as germline mutations, somatic genetic aberrations, chromosome copy number, transcriptomics, and epigenetics have proven to contribute to the pathogenesis of neuroblastoma. The primary predisposition genes in familial neuroblastoma are ALK and PHOX2B. Sporadic neuroblastoma arises with complex pathogenesis, but chromosomal abnormalities and single-nucleotide polymorphisms have been identified to cooperatively lead to oncogenesis. These advances have led to new therapeutic approaches with the potential to improve outcomes for children with neuroblastoma.
{"title":"Nervous system: Embryonal tumors: Neuroblastoma.","authors":"Caileigh Pudela, Skye Balyasny, Mark A Applebaum","doi":"10.4267/2042/70771","DOIUrl":"https://doi.org/10.4267/2042/70771","url":null,"abstract":"<p><p>Neuroblastoma is a clinically heterogenous pediatric cancer of the sympathetic nervous system that originates from neural crest cells. It is the most common extracranial solid tumor in childhood and prognosis ranges from spontaneous tumor regression to aggressive disease resistant to multimodal therapy. Prognosis depends on patient characteristics and tumor biology that determine risk classification. Advancements in therapy reductions are merited for low- and intermediate-risk neuroblastoma patients, who generally have excellent outcomes. Of the patients with high-risk disease, only 50% achieve long-term survival, and therapeutic advancements are needed. Over the past several decades, genomic features such as germline mutations, somatic genetic aberrations, chromosome copy number, transcriptomics, and epigenetics have proven to contribute to the pathogenesis of neuroblastoma. The primary predisposition genes in familial neuroblastoma are <i>ALK</i> and <i>PHOX2B</i>. Sporadic neuroblastoma arises with complex pathogenesis, but chromosomal abnormalities and single-nucleotide polymorphisms have been identified to cooperatively lead to oncogenesis. These advances have led to new therapeutic approaches with the potential to improve outcomes for children with neuroblastoma.</p>","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":"24 7","pages":"284-290"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158874/pdf/nihms-1057460.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37839320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RARA (Retinoic acid receptor, alpha)","authors":"F. Vigué","doi":"10.4267/2042/70859","DOIUrl":"https://doi.org/10.4267/2042/70859","url":null,"abstract":"","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43535889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The serine/threonine kinase Traf2and Nck interacting kinase (TNIK), is a member of the germinal center kinase (GCK) family that has been reported to have an important role in the regulation of Jun N-terminal kinase pathway (JNK) activation and actin cytoskeleton. It has also been demonstrated that TNIK is an important activator of Wnt pathway, where it interacts with β-catenin/TCF4 complex, phosphorylates TCF4 inducing the transcription of Wnt target genes. In several studies, the expression of TNIK has been established to be involved in different human cancers.
丝氨酸/苏氨酸激酶traf2和Nck相互作用激酶(TNIK)是生发中心激酶(GCK)家族的成员,据报道在Jun n -末端激酶途径(JNK)激活和肌动蛋白细胞骨架的调控中起重要作用。TNIK是Wnt通路的重要激活因子,与β-catenin/TCF4复合物相互作用,使TCF4磷酸化,诱导Wnt靶基因的转录。在一些研究中,已经确定TNIK的表达与不同的人类癌症有关。
{"title":"TNIK (TRAF2 and NCK interacting kinase)","authors":"A. Cassaro","doi":"10.4267/2042/70860","DOIUrl":"https://doi.org/10.4267/2042/70860","url":null,"abstract":"The serine/threonine kinase Traf2and Nck interacting kinase (TNIK), is a member of the germinal center kinase (GCK) family that has been reported to have an important role in the regulation of Jun N-terminal kinase pathway (JNK) activation and actin cytoskeleton. It has also been demonstrated that TNIK is an important activator of Wnt pathway, where it interacts with β-catenin/TCF4 complex, phosphorylates TCF4 inducing the transcription of Wnt target genes. In several studies, the expression of TNIK has been established to be involved in different human cancers.","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44278846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CD22 (CD22 molecule)","authors":"Barnabas Nyesiga, Z. El-Schich","doi":"10.4267/2042/70879","DOIUrl":"https://doi.org/10.4267/2042/70879","url":null,"abstract":"","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41425754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eukaryotic translation elongation factor 1 epsilon 1, alias EEF1E1, is a protein-coding gene that plays a role in the elongation step of translation. In particular, it is an auxiliary component of the macromolecular aminoacyl-tRNA synthase complex (MARS). Its expression is found frequently altered in human cancer cells and it is considered a putative tumor suppressor gene. This review collects the data on DNA/RNA, the protein encoded and the diseases where EEF1E1 is involved.
{"title":"EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1)","authors":"L. Cristiano","doi":"10.4267/2042/70858","DOIUrl":"https://doi.org/10.4267/2042/70858","url":null,"abstract":"Eukaryotic translation elongation factor 1 epsilon 1, alias EEF1E1, is a protein-coding gene that plays a role in the elongation step of translation. In particular, it is an auxiliary component of the macromolecular aminoacyl-tRNA synthase complex (MARS). Its expression is found frequently altered in human cancer cells and it is considered a putative tumor suppressor gene. This review collects the data on DNA/RNA, the protein encoded and the diseases where EEF1E1 is involved.","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49449576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
APC-associated polyposis conditions result from a constitutional heterozygous pathogenic variant in the APC gene. These conditions include three main clinical phenotypes: the familial adenomatous polyposis (FAP), the attenuated FAP (AFAP) and the gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). This phenotypic variability corresponds to the differences in the location of the pathogenic variant within the APC gene, even though variations among the individuals and within the families with the identical APC pathogenic variant may occur. Colorectal screening should begin from age 10 to 12 years in FAP and in late teens in AFAP, or earlier if there are gastrointestinal symptoms; the timing of surgery and the extent of resection should be determined on the basis of patient's personal history. Esophagogastroduodenoscopy is recommended by age 20-30 years or prior to colon surgery. Data to support screening for other cancers and manifestations associated with FAP are limited. The efficacy of the screening for gastric cancer and of prophylactic gastrectomy for patients with GAPPS is currently unknown.
{"title":"APC-associated polyposis conditions","authors":"M. T. Ricci","doi":"10.4267/2042/70880","DOIUrl":"https://doi.org/10.4267/2042/70880","url":null,"abstract":"APC-associated polyposis conditions result from a constitutional heterozygous pathogenic variant in the APC gene. These conditions include three main clinical phenotypes: the familial adenomatous polyposis (FAP), the attenuated FAP (AFAP) and the gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). This phenotypic variability corresponds to the differences in the location of the pathogenic variant within the APC gene, even though variations among the individuals and within the families with the identical APC pathogenic variant may occur. Colorectal screening should begin from age 10 to 12 years in FAP and in late teens in AFAP, or earlier if there are gastrointestinal symptoms; the timing of surgery and the extent of resection should be determined on the basis of patient's personal history. Esophagogastroduodenoscopy is recommended by age 20-30 years or prior to colon surgery. Data to support screening for other cancers and manifestations associated with FAP are limited. The efficacy of the screening for gastric cancer and of prophylactic gastrectomy for patients with GAPPS is currently unknown.","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47603160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catarina Sofia Reis Silva, G. H. Barbosa, P. Branco, P. Jimenez, J. Machado-Neto, L. Costa-Lotufo
{"title":"XIAP (X-linked inhibitor of apoptosis)","authors":"Catarina Sofia Reis Silva, G. H. Barbosa, P. Branco, P. Jimenez, J. Machado-Neto, L. Costa-Lotufo","doi":"10.4267/2042/70862","DOIUrl":"https://doi.org/10.4267/2042/70862","url":null,"abstract":"","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46987409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BCL2L15 (BCL2-like 15)","authors":"P. Artemaki, M. Pavlou, C. Kontos","doi":"10.4267/2042/70876","DOIUrl":"https://doi.org/10.4267/2042/70876","url":null,"abstract":"","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49051976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A2M (alpha-2-macroglobulin)","authors":"R. Gurbanov, Gizem Samgane","doi":"10.4267/2042/70878","DOIUrl":"https://doi.org/10.4267/2042/70878","url":null,"abstract":"","PeriodicalId":52212,"journal":{"name":"Atlas of Genetics and Cytogenetics in Oncology and Haematology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45387592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}