首页 > 最新文献

Journal of Statistical Distributions and Applications最新文献

英文 中文
The odd log-logistic logarithmic generated family of distributions with applications in different areas 奇对数-逻辑对数生成的分布族在不同领域的应用
Q2 Mathematics Pub Date : 2017-07-04 DOI: 10.1186/s40488-017-0062-7
M. Alizadeh, S. M. T. K. MirMostafee, E. Ortega, T. Ramires, G. Cordeiro
{"title":"The odd log-logistic logarithmic generated family of distributions with applications in different areas","authors":"M. Alizadeh, S. M. T. K. MirMostafee, E. Ortega, T. Ramires, G. Cordeiro","doi":"10.1186/s40488-017-0062-7","DOIUrl":"https://doi.org/10.1186/s40488-017-0062-7","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0062-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Density deconvolution for generalized skew-symmetric distributions 广义偏对称分布的密度反褶积
Q2 Mathematics Pub Date : 2017-06-05 DOI: 10.1186/s40488-020-00103-y
Cornelis J. Potgieter
{"title":"Density deconvolution for generalized skew-symmetric distributions","authors":"Cornelis J. Potgieter","doi":"10.1186/s40488-020-00103-y","DOIUrl":"https://doi.org/10.1186/s40488-020-00103-y","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-020-00103-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42249610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of polyhedral convex contoured distributions 多面体凸轮廓分布的模拟
Q2 Mathematics Pub Date : 2017-03-21 DOI: 10.1186/s40488-017-0055-6
W. Richter, Kay Schicker
{"title":"Simulation of polyhedral convex contoured distributions","authors":"W. Richter, Kay Schicker","doi":"10.1186/s40488-017-0055-6","DOIUrl":"https://doi.org/10.1186/s40488-017-0055-6","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0055-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent developments on the moment problem 力矩问题的最新进展
Q2 Mathematics Pub Date : 2017-03-03 DOI: 10.1186/s40488-017-0059-2
G. D. Lin
{"title":"Recent developments on the moment problem","authors":"G. D. Lin","doi":"10.1186/s40488-017-0059-2","DOIUrl":"https://doi.org/10.1186/s40488-017-0059-2","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0059-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
High quantile regression for extreme events. 极端事件的高分位数回归。
Q2 Mathematics Pub Date : 2017-01-01 Epub Date: 2017-05-03 DOI: 10.1186/s40488-017-0058-3
Mei Ling Huang, Christine Nguyen

For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L 1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.

对于极端事件,重尾分布的高条件分位数估计是一个重要问题。分位数回归是该领域的一种有用的方法,具有广泛的应用。分位数回归使用了1-损失函数,并通过线性规划得到了最优解。本文提出了一种加权分位数回归方法。通过蒙特卡罗模拟,将所提出的方法与现有的估计高条件分位数的方法进行了比较。我们还使用所提出的加权方法研究了两个现实世界的例子。蒙特卡罗仿真和两个实际算例表明,所提方法是对现有方法的改进。
{"title":"High quantile regression for extreme events.","authors":"Mei Ling Huang,&nbsp;Christine Nguyen","doi":"10.1186/s40488-017-0058-3","DOIUrl":"https://doi.org/10.1186/s40488-017-0058-3","url":null,"abstract":"<p><p>For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an <i>L</i> <sub>1</sub>-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0058-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37682930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Goodness of fit for the logistic regression model using relative belief. 使用相对信念的逻辑回归模型的拟合优度。
Q2 Mathematics Pub Date : 2017-01-01 Epub Date: 2017-08-31 DOI: 10.1186/s40488-017-0070-7
Luai Al-Labadi, Zeynep Baskurt, Michael Evans

A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis H 0 of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about H 0 with the concentration of the prior about H 0. This comparison is effected via a relative belief ratio, a measure of the evidence that H 0 is true, together with a measure of the strength of the evidence that H 0 is either true or false. This gives an effective goodness of fit test for logistic regression.

逻辑回归模型是积二叉数据的专门模型。如果在乘积-二叉模型的非限制模型上放置一个适当的、非信息先验,那么就可以通过比较关于 H 0 的后验分布浓度和关于 H 0 的先验浓度,来评估逻辑回归模型持有的假设 H 0。这为逻辑回归提供了有效的拟合优度检验。
{"title":"Goodness of fit for the logistic regression model using relative belief.","authors":"Luai Al-Labadi, Zeynep Baskurt, Michael Evans","doi":"10.1186/s40488-017-0070-7","DOIUrl":"10.1186/s40488-017-0070-7","url":null,"abstract":"<p><p>A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis <i>H</i> <sub>0</sub> of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about <i>H</i> <sub>0</sub> with the concentration of the prior about <i>H</i> <sub>0</sub>. This comparison is effected via a relative belief ratio, a measure of the evidence that <i>H</i> <sub>0</sub> is true, together with a measure of the strength of the evidence that <i>H</i> <sub>0</sub> is either true or false. This gives an effective goodness of fit test for logistic regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37603708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marginalized mixture models for count data from multiple source populations. 多源种群计数数据的边缘混合模型。
Q2 Mathematics Pub Date : 2017-01-01 Epub Date: 2017-04-07 DOI: 10.1186/s40488-017-0057-4
Habtamu K Benecha, Brian Neelon, Kimon Divaris, John S Preisser

Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.

混合分布为从具有无法解释的异质性的群体收集的数据建模提供了灵活性。虽然传统有限混合模型对回归参数的解释是针对未观察到的亚种群或潜在类的,但研究人员通常对推断总体种群中计数变量的边际平均值感兴趣。最近,在零膨胀泊松和负二项回归模型的极大似然估计框架内,介绍了零膨胀计数结果的边际均值回归建模方法。在本文中,我们提出了基于非退化计数数据分布的双组分混合的边缘混合回归模型,该模型提供了暴露对计数结果总体均值的直接可解释估计。这些模型通过模拟来检验,并应用于两个数据集,一个来自双盲龋齿发病率试验,另一个来自园艺试验。将所提模型的有限样本性能相互比较,并与边缘零膨胀计数模型以及普通泊松和负二项回归进行了比较。
{"title":"Marginalized mixture models for count data from multiple source populations.","authors":"Habtamu K Benecha,&nbsp;Brian Neelon,&nbsp;Kimon Divaris,&nbsp;John S Preisser","doi":"10.1186/s40488-017-0057-4","DOIUrl":"https://doi.org/10.1186/s40488-017-0057-4","url":null,"abstract":"<p><p>Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0057-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34946340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rank correlation under categorical confounding. 分类混杂下的等级相关。
Q2 Mathematics Pub Date : 2017-01-01 Epub Date: 2017-09-15 DOI: 10.1186/s40488-017-0076-1
Jean-François Plante

Rank correlation is invariant to bijective marginal transformations, but it is not immune to confounding. Assuming a categorical confounding variable is observed, the author proposes weighted coefficients of correlation for continuous variables developed within a larger framework based on copulas. While the weighting is clear under the assumption that the dependence is the same within each group implied by the confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients are derived and simulations are used to assess their finite sample properties.

秩相关对双客观边缘变换是不变的,但也不能避免混淆。假设观察到一个分类混淆变量,作者提出了在基于copula的更大框架内开发的连续变量的加权相关系数。虽然在混杂因素暗示的每组内的依赖性相同的假设下,权重是明确的,但作者扩展了最小平均均方误差(MAMSE)权重,以便在组间的依赖性可能不同时借用组间的强度。推导了所提系数的渐近性质,并用模拟来评估它们的有限样本性质。
{"title":"Rank correlation under categorical confounding.","authors":"Jean-François Plante","doi":"10.1186/s40488-017-0076-1","DOIUrl":"10.1186/s40488-017-0076-1","url":null,"abstract":"<p><p>Rank correlation is invariant to bijective marginal transformations, but it is not immune to confounding. Assuming a categorical confounding variable is observed, the author proposes weighted coefficients of correlation for continuous variables developed within a larger framework based on copulas. While the weighting is clear under the assumption that the dependence is the same within each group implied by the confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients are derived and simulations are used to assess their finite sample properties.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0076-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37602166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized log-logistic proportional hazard model with applications in survival analysis 广义对数-逻辑比例风险模型及其在生存分析中的应用
Q2 Mathematics Pub Date : 2016-11-29 DOI: 10.1186/s40488-016-0054-z
Shahedul A. Khan, Saima K. Khosa
{"title":"Generalized log-logistic proportional hazard model with applications in survival analysis","authors":"Shahedul A. Khan, Saima K. Khosa","doi":"10.1186/s40488-016-0054-z","DOIUrl":"https://doi.org/10.1186/s40488-016-0054-z","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-016-0054-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Exponentiated Marshall-Olkin family of distributions 指数马歇尔-奥尔金分布族
Q2 Mathematics Pub Date : 2016-11-05 DOI: 10.1186/s40488-016-0051-2
Cícero R. B. Dias, G. Cordeiro, M. Alizadeh, Pedro Rafael Diniz Marinho, Hemílio Fernandes Campos Coêlho
{"title":"Exponentiated Marshall-Olkin family of distributions","authors":"Cícero R. B. Dias, G. Cordeiro, M. Alizadeh, Pedro Rafael Diniz Marinho, Hemílio Fernandes Campos Coêlho","doi":"10.1186/s40488-016-0051-2","DOIUrl":"https://doi.org/10.1186/s40488-016-0051-2","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-016-0051-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Statistical Distributions and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1