Pub Date : 2021-11-25DOI: 10.2495/eq-v6-n4-335-346
U. Dietrich
Zero-energy buildings (ZEBs) have no fossil energy consumption; this is achieved by optimizing the building and balancing the remaining energy needs by renewables. If this energy can be harvested onsite, on the building’s envelope and its estate, a net-ZEB is reached. If supplementary renewable energy has to be produced off-site on compensating land, the ZEB can be reached with such compensating measures (ZEB_CM). Climate and urban density determine how far a ZEB is possible. Temperatures out of comfort range, lack of daylight and overheating by solar radiation may cause energy demand while high insolation or wind speed delivers good preconditions to produce renewable energy on less land. A high urban density avoids urban sprawl and saves land outside of the cities that can be used for other purposes (agriculture and energy production, among others). But, at a certain density, net-ZEB cannot be realized furthermore, and compensating land is necessary. The paper investigates these effects for 15 selected cities around the globe, covering all main climatic conditions. Based on design rules out of literature and own experiences, a prototypical optimized building is derived for each location, and its energy demand is simulated. Standard assumptions for the efficiency of renewable energy systems are used to determine the need of land to cover it. For different urban densities, it can be concluded how far net-ZEB is possible; if necessary, the need for compensating land is calculated. The results show that for cities with moderate climates, the total land use (city plus compensating land) can decrease with increasing urban density if the technology used off-site has high efficiency (like PV). On the other hand, the total land use may increase remarkably with increasing urban density if the used technology off-site has a low efficiency (like the wind for electricity and especially wood pellets for heating). The final understanding is that cities should meet the energy needs on-site by optimized buildings and structures plus renewable energy production (PV on the building’s roofs, geothermal systems, etc.).
{"title":"Zero-energy buildings in cities with different climates and urban densities: energy demand, renewable energy harvest on-site and off-site and total land use for different renewable technologies","authors":"U. Dietrich","doi":"10.2495/eq-v6-n4-335-346","DOIUrl":"https://doi.org/10.2495/eq-v6-n4-335-346","url":null,"abstract":"Zero-energy buildings (ZEBs) have no fossil energy consumption; this is achieved by optimizing the building and balancing the remaining energy needs by renewables. If this energy can be harvested onsite, on the building’s envelope and its estate, a net-ZEB is reached. If supplementary renewable energy has to be produced off-site on compensating land, the ZEB can be reached with such compensating measures (ZEB_CM). Climate and urban density determine how far a ZEB is possible. Temperatures out of comfort range, lack of daylight and overheating by solar radiation may cause energy demand while high insolation or wind speed delivers good preconditions to produce renewable energy on less land. A high urban density avoids urban sprawl and saves land outside of the cities that can be used for other purposes (agriculture and energy production, among others). But, at a certain density, net-ZEB cannot be realized furthermore, and compensating land is necessary. The paper investigates these effects for 15 selected cities around the globe, covering all main climatic conditions. Based on design rules out of literature and own experiences, a prototypical optimized building is derived for each location, and its energy demand is simulated. Standard assumptions for the efficiency of renewable energy systems are used to determine the need of land to cover it. For different urban densities, it can be concluded how far net-ZEB is possible; if necessary, the need for compensating land is calculated. The results show that for cities with moderate climates, the total land use (city plus compensating land) can decrease with increasing urban density if the technology used off-site has high efficiency (like PV). On the other hand, the total land use may increase remarkably with increasing urban density if the used technology off-site has a low efficiency (like the wind for electricity and especially wood pellets for heating). The final understanding is that cities should meet the energy needs on-site by optimized buildings and structures plus renewable energy production (PV on the building’s roofs, geothermal systems, etc.).","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41741641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-245-262
Afaf D. Almoallem
{"title":"Electricity consumption analysis and management for different residential buildings in jeddah, saudi arabia","authors":"Afaf D. Almoallem","doi":"10.2495/eq-v6-n2-245-262","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-245-262","url":null,"abstract":"","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45907190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-211-228
Gricelda Herrera-Franco, Paulo Escandón-Panchana, K. Erazo, Carlos Mora-Frank, E. Berrezueta
From an environmental viewpoint, oil wells can be considered a potential source of pollution when improperly managed. The Santa Elena province (Ecuador), located on the Pacific coast, currently has a residual crude oil extraction compared to production generated in the Amazon region of the country. However, this activity in the coastal zone is very near to urban and rural populations. Therefore, a detailed influence analysis of these wells on the environment is necessary. This work aims to analyse, from a geoenvironmental perspective, the oil wells impact located in a pilot zone (urban and rural) of the oil field studied and, complementarily, to describe their incidence on the community and territory. The methodological process includes (i) oil wells compilation and inventory within the study zone and selection of a pilot zone; (ii) contaminating factors identification generated by the wells infrastructure (mechanical and territorial) and their current state of activity (production or abandoned); (iii) environmental impacts analysis generated through the development of a cause-effect matrix and, finally, the evaluation of a method and results found through a focus group technique. The results reflect a negative impact on the land cover and vegetative-animal environment in the vicinity of the wells, caused by the continuous release of gases, metallic oxidation and bituminous exhumation. The overall impacts interpretation compiled indicates that comprehensive action is needed at the wells to control and minimise them. The implementation of new environmental strategies through zoning can help to achieve adequate land-use planning, thus combining the safe and sustainable use of the resource with the development of other community activities (urbanisation, tourism, industry, agriculture and fishing) and environmental protection.
{"title":"Geoenvironmental analysis of oil extraction activities in urban and rural zones of Santa Elena Province, Ecuador","authors":"Gricelda Herrera-Franco, Paulo Escandón-Panchana, K. Erazo, Carlos Mora-Frank, E. Berrezueta","doi":"10.2495/eq-v6-n2-211-228","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-211-228","url":null,"abstract":"From an environmental viewpoint, oil wells can be considered a potential source of pollution when improperly managed. The Santa Elena province (Ecuador), located on the Pacific coast, currently has a residual crude oil extraction compared to production generated in the Amazon region of the country. However, this activity in the coastal zone is very near to urban and rural populations. Therefore, a detailed influence analysis of these wells on the environment is necessary. This work aims to analyse, from a geoenvironmental perspective, the oil wells impact located in a pilot zone (urban and rural) of the oil field studied and, complementarily, to describe their incidence on the community and territory. The methodological process includes (i) oil wells compilation and inventory within the study zone and selection of a pilot zone; (ii) contaminating factors identification generated by the wells infrastructure (mechanical and territorial) and their current state of activity (production or abandoned); (iii) environmental impacts analysis generated through the development of a cause-effect matrix and, finally, the evaluation of a method and results found through a focus group technique. The results reflect a negative impact on the land cover and vegetative-animal environment in the vicinity of the wells, caused by the continuous release of gases, metallic oxidation and bituminous exhumation. The overall impacts interpretation compiled indicates that comprehensive action is needed at the wells to control and minimise them. The implementation of new environmental strategies through zoning can help to achieve adequate land-use planning, thus combining the safe and sustainable use of the resource with the development of other community activities (urbanisation, tourism, industry, agriculture and fishing) and environmental protection.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43118436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-277-293
A. Sadanand, R. Nagarajan, M. Devadas
{"title":"The façade wall: a focus on the green architecture of Laurie Baker’s houses","authors":"A. Sadanand, R. Nagarajan, M. Devadas","doi":"10.2495/eq-v6-n2-277-293","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-277-293","url":null,"abstract":"","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47838881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-263-276
A. Domnikov, M. Khodorovsky, L. Domnikova
The reliable operation of energy cogeneration systems as the most important component of large energy systems is essential for the successful development of a national economy. Not only technical, but also economic reliability aspects predetermine the complexity of studying the above-mentioned subjects and their interaction with other components of the economy and social sphere. As a result of calculations, an assessment of the level of reliability of the energy cogeneration systems of the Ural region was obtained. The obtained estimates made it possible to form a set of measures that will affect the increase in reliability of energy cogeneration systems and in the future will ensure the optimal allocation of resources to increase the competitiveness of energy generating companies. Also, the influence of energy cogeneration systems properties as technical and economic objects on the formation of the power generation reliability level of a large region has been assessed. Based on the results of the calculations, the reliability levels of the Urals energy cogeneration systems are determined and an analysis of their operational reliability is presented.
{"title":"Methodological approach to the research of energy cogeneration systems operational reliability indicators","authors":"A. Domnikov, M. Khodorovsky, L. Domnikova","doi":"10.2495/eq-v6-n2-263-276","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-263-276","url":null,"abstract":"The reliable operation of energy cogeneration systems as the most important component of large energy systems is essential for the successful development of a national economy. Not only technical, but also economic reliability aspects predetermine the complexity of studying the above-mentioned subjects and their interaction with other components of the economy and social sphere. As a result of calculations, an assessment of the level of reliability of the energy cogeneration systems of the Ural region was obtained. The obtained estimates made it possible to form a set of measures that will affect the increase in reliability of energy cogeneration systems and in the future will ensure the optimal allocation of resources to increase the competitiveness of energy generating companies. Also, the influence of energy cogeneration systems properties as technical and economic objects on the formation of the power generation reliability level of a large region has been assessed. Based on the results of the calculations, the reliability levels of the Urals energy cogeneration systems are determined and an analysis of their operational reliability is presented.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69039830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-306-316
Hicham Machmouchi, R. Pillai
Due to their high rate of heat transfer and better thermo-physical properties, the application of nanoparticles in cooling systems results in better enhancement, improved reliability and efficiency of refrigeration and air conditioning systems, and hence, they are widely used in domestic and industrial sectors. It has been found that the major contribution to global warming potential (GWP) and depletion of ozone layer (ODP) is due to the over usage of conventional refrigerants; thus, the utilization of nanoparticles in refrigeration and air conditioning systems is highly recommended. The application of nanorefrigerants not only increases the thermal conductivity and heat transfer characteristics but also improves the coefficient of performance (COP) effectively, leading to energy savings. This article comprises the theoretical analysis of R134a-Al2O3, R134a-ZnO, R134a-TiO2 and R134a-CuO mixtures as replacements of pure R134a refrigerant in vapour compression refrigerants (VCRs). For comparison, the COP and refrigeration effect (RE) of the system with and without the addition of nanoparticles are determined from reported observations. It is concluded that the COP of a refrigeration system with added nanoadditives in refrigerant fluid is higher than that of systems running with pure refrigerant fluid. Around 38% increase in COP has been recorded in this study. Moreover, CuO nanoparticles showed high value of COP when blended with R134a compared to other nanoparticles. The COP of the refrigeration systems varies with the type of refrigerants used in the system.
{"title":"Analysis of novel refrigeration systems performance with and without nanoparticles","authors":"Hicham Machmouchi, R. Pillai","doi":"10.2495/eq-v6-n2-306-316","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-306-316","url":null,"abstract":"Due to their high rate of heat transfer and better thermo-physical properties, the application of nanoparticles in cooling systems results in better enhancement, improved reliability and efficiency of refrigeration and air conditioning systems, and hence, they are widely used in domestic and industrial sectors. It has been found that the major contribution to global warming potential (GWP) and depletion of ozone layer (ODP) is due to the over usage of conventional refrigerants; thus, the utilization of nanoparticles in refrigeration and air conditioning systems is highly recommended. The application of nanorefrigerants not only increases the thermal conductivity and heat transfer characteristics but also improves the coefficient of performance (COP) effectively, leading to energy savings. This article comprises the theoretical analysis of R134a-Al2O3, R134a-ZnO, R134a-TiO2 and R134a-CuO mixtures as replacements of pure R134a refrigerant in vapour compression refrigerants (VCRs). For comparison, the COP and refrigeration effect (RE) of the system with and without the addition of nanoparticles are determined from reported observations. It is concluded that the COP of a refrigeration system with added nanoadditives in refrigerant fluid is higher than that of systems running with pure refrigerant fluid. Around 38% increase in COP has been recorded in this study. Moreover, CuO nanoparticles showed high value of COP when blended with R134a compared to other nanoparticles. The COP of the refrigeration systems varies with the type of refrigerants used in the system.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42516770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-229-244
A. Koncz, A. Gludovátz
Electricity consumption has been analysed since 2016 at a Hungarian furniture company. At the beginning of the research, a cyber-physical system was created which is capable of storing and analysing data on energy consumption by the production machines. The speciality of the system is that it can collect not only data on energy consumption by the machines but also the system can compare the energy consumption with production data. The data is received from sensors, which are installed into the building management system via the company’s own computer network. In this building management system, calculations can also be performed. All the collected and calculated data are entered into the company’s big database. The data is analysed with a business intelligence system, and the results are presented to the management and the other employees of the company. With this cyber-physical system all equipment are followed up in terms of energy management. The measured data can be analysed together by manufacturing machines and time; this way production efficiency can be represented by indicators. The goal of this study is not only to aggregate the energy consumption of machines that directly produce, but also to relate the energy consumption of indirectly aggregated production support equipment to production data. To achieve this goal, a completely new sensor environment had to be built to provide data from the supporting devices. One of the key supporting equipment is the extractors. These devices consume a huge part of total annual energy consumption of the factory (~30%). Their energy consumption costs are indirectly related to production, but through research and development, consumption can already be managed directly and aggregate to the creating of a product.
{"title":"Calculation of indirect electricity consumption in product manufacturing","authors":"A. Koncz, A. Gludovátz","doi":"10.2495/eq-v6-n2-229-244","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-229-244","url":null,"abstract":"Electricity consumption has been analysed since 2016 at a Hungarian furniture company. At the beginning of the research, a cyber-physical system was created which is capable of storing and analysing data on energy consumption by the production machines. The speciality of the system is that it can collect not only data on energy consumption by the machines but also the system can compare the energy consumption with production data. The data is received from sensors, which are installed into the building management system via the company’s own computer network. In this building management system, calculations can also be performed. All the collected and calculated data are entered into the company’s big database. The data is analysed with a business intelligence system, and the results are presented to the management and the other employees of the company. With this cyber-physical system all equipment are followed up in terms of energy management. The measured data can be analysed together by manufacturing machines and time; this way production efficiency can be represented by indicators. The goal of this study is not only to aggregate the energy consumption of machines that directly produce, but also to relate the energy consumption of indirectly aggregated production support equipment to production data. To achieve this goal, a completely new sensor environment had to be built to provide data from the supporting devices. One of the key supporting equipment is the extractors. These devices consume a huge part of total annual energy consumption of the factory (~30%). Their energy consumption costs are indirectly related to production, but through research and development, consumption can already be managed directly and aggregate to the creating of a product.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47785743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.2495/eq-v6-n2-294-305
L. Gitelman, M. Kozhevnikov, G. Chebotareva
The paper deals with the formation and development of strategic intelligence, a fundamentally new management mechanism in organizations that provides information and analytical support for making anticipatory decisions and the company’s preparedness for unpredictable challenges of the future. The paper systematizes academic approaches in terms of distinctive features and classification criteria of strategic intelligence, formulates its key objectives in the course of digital transformation, and gives the criteria for assessing its level in companies. It is shown that the establishment of strategic intelligence requires the introduction of specialized management systems, such as anticipatory management, and the formation of relevant competencies based on anticipatory learning. An anticipatory management model is proposed that takes into account weak signals for timely and adequate response to emerging threats. The power engineering industry has been used as an example for demonstrating the given model’s capabilities to create standard algorithms for making anticipatory decisions in difficult situations. The paper also defines the role of strategic intelligence in the process of digital transformation and the transformation of organizations into self-learning ones.
{"title":"Strategic intelligence of an organization amid uncertainty","authors":"L. Gitelman, M. Kozhevnikov, G. Chebotareva","doi":"10.2495/eq-v6-n2-294-305","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-294-305","url":null,"abstract":"The paper deals with the formation and development of strategic intelligence, a fundamentally new management mechanism in organizations that provides information and analytical support for making anticipatory decisions and the company’s preparedness for unpredictable challenges of the future. The paper systematizes academic approaches in terms of distinctive features and classification criteria of strategic intelligence, formulates its key objectives in the course of digital transformation, and gives the criteria for assessing its level in companies. It is shown that the establishment of strategic intelligence requires the introduction of specialized management systems, such as anticipatory management, and the formation of relevant competencies based on anticipatory learning. An anticipatory management model is proposed that takes into account weak signals for timely and adequate response to emerging threats. The power engineering industry has been used as an example for demonstrating the given model’s capabilities to create standard algorithms for making anticipatory decisions in difficult situations. The paper also defines the role of strategic intelligence in the process of digital transformation and the transformation of organizations into self-learning ones.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48855416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-31DOI: 10.2495/eq-v6-n2-181-192
D.T. Ritter, Daniel Wesemeyer, Sten Ruppe
{"title":"A mana gement system for electric vehicles to optimize the allocation of charging processes on moto rways","authors":"D.T. Ritter, Daniel Wesemeyer, Sten Ruppe","doi":"10.2495/eq-v6-n2-181-192","DOIUrl":"https://doi.org/10.2495/eq-v6-n2-181-192","url":null,"abstract":"","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47516045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. E. Aronson, B. E. Murmansky, I. B. Murmanskii, Y. Brodov
This article describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems’ components. The expert system is based on Bayes’ theorem and permits one to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach, the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, and the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 pieces of evidence (indications); the procedures are also designated for 20 state parameters’ estimation. Similar knowledge bases containing the diagnostic features and fault hypotheses are formulated for other technological subsystems of a turbine unit. With the necessary initial information available, a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path, it is the correlation and regression analysis of multifactor relationship between the vibration and the regime parameters; for thermal expansion system, it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit, it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement. With the lack of initial information, the expert system formulates a diagnosis and calculates the probability of faults’ origin.
{"title":"An expert system for diagnostics and estimation of steam turbine components’ condition","authors":"K. E. Aronson, B. E. Murmansky, I. B. Murmanskii, Y. Brodov","doi":"10.2495/eq-v5-n1-70-81","DOIUrl":"https://doi.org/10.2495/eq-v5-n1-70-81","url":null,"abstract":"This article describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems’ components. The expert system is based on Bayes’ theorem and permits one to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach, the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, and the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 pieces of evidence (indications); the procedures are also designated for 20 state parameters’ estimation. Similar knowledge bases containing the diagnostic features and fault hypotheses are formulated for other technological subsystems of a turbine unit. With the necessary initial information available, a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path, it is the correlation and regression analysis of multifactor relationship between the vibration and the regime parameters; for thermal expansion system, it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit, it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement. With the lack of initial information, the expert system formulates a diagnosis and calculates the probability of faults’ origin.","PeriodicalId":52236,"journal":{"name":"International Journal of Energy Production and Management","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141225033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}