首页 > 最新文献

One Earth最新文献

英文 中文
Carbon accounting for carbon dioxide removal 清除二氧化碳的碳核算
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-20 DOI: 10.1016/j.oneear.2024.08.012
Sarah L. Nordahl, Rebecca J. Hanes, Kimberley K. Mayfield, Corey Myers, Sarah E. Baker, Corinne D. Scown

Carbon dioxide removal (CDR) technologies are essential to address climate change and serve to compensate for legacy and hard-to-abate greenhouse gas emissions. Although near-term emissions reductions should be the priority, development and deployment of CDR must proceed now to ensure that relevant technologies are ready at scale in the future. Despite a rapid growth in CDR purchases, no single standardized methodology for evaluating project-level net CO2 removal exists. Life cycle assessment (LCA) frequently produces net-negative emissions footprints, but only a small subset of those systems achieves a net flux of CO2 out of the atmosphere. In contrast to LCA, CDR accounting uses expansive system boundaries and excludes avoidance credits to distinguish between systems that achieve net removal from those that only contribute to emissions mitigation. This primer discusses a framework and set of metrics for CDR accounting.

二氧化碳清除(CDR)技术是应对气候变化的关键,也是对遗留的和难以消减的温室气体排放的补偿。尽管近期减排应是优先事项,但现在就必须着手开发和部署 CDR,以确保相关技术在未来能够大规模应用。尽管 CDR 的购买量快速增长,但目前还没有一种单一的标准化方法来评估项目层面的二氧化碳净减排量。生命周期评估(LCA)经常会产生净负值排放足迹,但这些系统中只有一小部分实现了二氧化碳净排出大气。与生命周期评估不同的是,CDR 核算使用宽泛的系统边界,并排除避免排放的信用额度,以区分实现净清除的系统与仅有助于减排的系统。本入门书讨论了 CDR 核算的框架和一套衡量标准。
{"title":"Carbon accounting for carbon dioxide removal","authors":"Sarah L. Nordahl, Rebecca J. Hanes, Kimberley K. Mayfield, Corey Myers, Sarah E. Baker, Corinne D. Scown","doi":"10.1016/j.oneear.2024.08.012","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.012","url":null,"abstract":"<p>Carbon dioxide removal (CDR) technologies are essential to address climate change and serve to compensate for legacy and hard-to-abate greenhouse gas emissions. Although near-term emissions reductions should be the priority, development and deployment of CDR must proceed now to ensure that relevant technologies are ready at scale in the future. Despite a rapid growth in CDR purchases, no single standardized methodology for evaluating project-level net CO<sub>2</sub> removal exists. Life cycle assessment (LCA) frequently produces net-negative emissions footprints, but only a small subset of those systems achieves a net flux of CO<sub>2</sub> out of the atmosphere. In contrast to LCA, CDR accounting uses expansive system boundaries and excludes avoidance credits to distinguish between systems that achieve net removal from those that only contribute to emissions mitigation. This primer discusses a framework and set of metrics for CDR accounting.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing innovations for upscaling forest landscape restoration 评估扩大森林景观恢复规模的创新方法
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-20 DOI: 10.1016/j.oneear.2024.07.011
Leland K. Werden, Rebecca J. Cole, Katrin Schönhofer, Karen D. Holl, Rakan A. Zahawi, Colin Averill, Daniella Schweizer, Julio C. Calvo-Alvarado, Debra Hamilton, Francis H. Joyce, Miriam San-José, Florian Hofhansl, Lilly Briggs, David Rodríguez, Jeffrey W. Tingle, Fidel Chiriboga, Eben N. Broadbent, Gerald J. Quirós-Cedeño, Thomas W. Crowther

There is an increasing urgency to implement large-scale ecosystem restoration to mitigate the biodiversity and climate crises. These efforts must be scaled up to counteract the widespread degradation of the world’s forests, although restoration costs can often limit their application. Thus, there is a pressing need to identify cost-effective approaches that catalyze landscape-scale ecological recovery. Here, we highlight seven assisted restoration innovations with demonstrated local-scale results that, once upscaled, hold promise to rapidly regenerate forests. We comprehensively assessed how each approach facilitated forest, woodland, and/or mangrove recovery across 143 studies. Our results reveal techniques with a marked ability to catalyze vegetation recovery compared to “business-as-usual” approaches. However, the context-dependent cost-benefit ratio and feasibility of applying particular approaches requires careful consideration. Our assessment emphasizes that we already have many of the tools necessary to drive the terrestrial restoration movement forward. It is time to implement and assess their efficacy at scale.

实施大规模生态系统恢复以缓解生物多样性和气候危机的紧迫性与日俱增。必须加大这些工作的力度,以应对世界森林的普遍退化,但恢复成本往往会限制其应用。因此,迫切需要找到具有成本效益的方法,以促进景观规模的生态恢复。在此,我们重点介绍七种辅助恢复创新方法,这些方法已在当地范围内取得明显成效,一旦推广,有望实现森林的快速再生。我们在 143 项研究中全面评估了每种方法如何促进森林、林地和/或红树林的恢复。我们的研究结果表明,与 "一切照旧 "的方法相比,这些技术具有促进植被恢复的显著能力。然而,应用特定方法的成本效益比和可行性需要根据具体情况慎重考虑。我们的评估强调,我们已经拥有许多推动陆地恢复运动向前发展的必要工具。现在是大规模实施和评估其功效的时候了。
{"title":"Assessing innovations for upscaling forest landscape restoration","authors":"Leland K. Werden, Rebecca J. Cole, Katrin Schönhofer, Karen D. Holl, Rakan A. Zahawi, Colin Averill, Daniella Schweizer, Julio C. Calvo-Alvarado, Debra Hamilton, Francis H. Joyce, Miriam San-José, Florian Hofhansl, Lilly Briggs, David Rodríguez, Jeffrey W. Tingle, Fidel Chiriboga, Eben N. Broadbent, Gerald J. Quirós-Cedeño, Thomas W. Crowther","doi":"10.1016/j.oneear.2024.07.011","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.07.011","url":null,"abstract":"<p>There is an increasing urgency to implement large-scale ecosystem restoration to mitigate the biodiversity and climate crises. These efforts must be scaled up to counteract the widespread degradation of the world’s forests, although restoration costs can often limit their application. Thus, there is a pressing need to identify cost-effective approaches that catalyze landscape-scale ecological recovery. Here, we highlight seven assisted restoration innovations with demonstrated local-scale results that, once upscaled, hold promise to rapidly regenerate forests. We comprehensively assessed how each approach facilitated forest, woodland, and/or mangrove recovery across 143 studies. Our results reveal techniques with a marked ability to catalyze vegetation recovery compared to “business-as-usual” approaches. However, the context-dependent cost-benefit ratio and feasibility of applying particular approaches requires careful consideration. Our assessment emphasizes that we already have many of the tools necessary to drive the terrestrial restoration movement forward. It is time to implement and assess their efficacy at scale.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observed and projected declines in glacier albedo across the Third Pole in the 21st century 21 世纪第三极冰川反照率下降的观测结果和预测结果
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-12 DOI: 10.1016/j.oneear.2024.08.010
Shaoting Ren, Li Jia, Evan S. Miles, Massimo Menenti, Marin Kneib, Thomas E. Shaw, Pascal Buri, Michael J. McCarthy, Wei Yang, Francesca Pellicciotti, Tandong Yao

Glaciers are crucial water resources in the Third Pole (the Tibetan Plateau and its surroundings) and are shrinking in response to climate change. Glacier albedo is an expression of glacier interactions with climate and dust/black carbon, and albedo reduction enhances glacier mass loss, but its changes and potential drivers remain poorly quantified. We leverage satellite observations to explore the variability of glacier albedo and understand its sensitivity to potential drivers and its future evolution. We find that glacier albedo has declined during 2001–2020, but high interannual variability is also an important signal. These variations are highly sensitive to air temperature and snow conditions and to nearby dust/black carbon emission sources. Future changes to these drivers will lead to further decreases of 2.9%–12.5% in glacier albedo by 2100 under different warming scenarios. These findings highlight the importance of albedo in glacier future evolution and the urgency of action to mitigate climate warming.

冰川是第三极(青藏高原及其周边地区)的重要水资源,随着气候变化而不断缩小。冰川反照率是冰川与气候和灰尘/黑碳相互作用的一种表现形式,反照率的降低会加剧冰川的质量损失,但其变化和潜在的驱动因素仍然很少被量化。我们利用卫星观测来探索冰川反照率的变化,了解其对潜在驱动因素的敏感性及其未来演变。我们发现冰川反照率在 2001-2020 年间有所下降,但年际变化大也是一个重要信号。这些变化对气温和积雪条件以及附近的尘埃/黑碳排放源高度敏感。在不同的变暖情景下,这些驱动因素的未来变化将导致冰川反照率到2100年进一步下降2.9%-12.5%。这些发现凸显了反照率在冰川未来演变中的重要性,以及采取行动减缓气候变暖的紧迫性。
{"title":"Observed and projected declines in glacier albedo across the Third Pole in the 21st century","authors":"Shaoting Ren, Li Jia, Evan S. Miles, Massimo Menenti, Marin Kneib, Thomas E. Shaw, Pascal Buri, Michael J. McCarthy, Wei Yang, Francesca Pellicciotti, Tandong Yao","doi":"10.1016/j.oneear.2024.08.010","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.010","url":null,"abstract":"<p>Glaciers are crucial water resources in the Third Pole (the Tibetan Plateau and its surroundings) and are shrinking in response to climate change. Glacier albedo is an expression of glacier interactions with climate and dust/black carbon, and albedo reduction enhances glacier mass loss, but its changes and potential drivers remain poorly quantified. We leverage satellite observations to explore the variability of glacier albedo and understand its sensitivity to potential drivers and its future evolution. We find that glacier albedo has declined during 2001–2020, but high interannual variability is also an important signal. These variations are highly sensitive to air temperature and snow conditions and to nearby dust/black carbon emission sources. Future changes to these drivers will lead to further decreases of 2.9%–12.5% in glacier albedo by 2100 under different warming scenarios. These findings highlight the importance of albedo in glacier future evolution and the urgency of action to mitigate climate warming.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action 将 "人类世 "定义为一个地质时代,可捕捉到人类影响的三重性,从而增强科学和行动的能力
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.1016/j.oneear.2024.08.004
Jens-Christian Svenning, Matthew R. Kerr, Ninad A. Mungi, Alejandro Ordonez, Felix Riede

Defining an Anthropocene epoch from the mid-1900s allows representing human environmental impacts’ triphasic nature within the International Geological Timescale. Such an epoch captures humanity’s current planetary importance, with the Holocene and Late Pleistocene representing earlier phases of intensifying impacts. This formal framework empowers science and action toward planetary stewardship.

从 20 世纪中期开始定义人类纪,可以在国际地质时代尺度中体现人类对环境影响的三重性。这一时代反映了人类目前对地球的重要性,而全新世和晚更新世则代表了影响加剧的早期阶段。这一正式框架赋予科学和行动以地球管理的权力。
{"title":"Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action","authors":"Jens-Christian Svenning, Matthew R. Kerr, Ninad A. Mungi, Alejandro Ordonez, Felix Riede","doi":"10.1016/j.oneear.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.004","url":null,"abstract":"<p>Defining an Anthropocene epoch from the mid-1900s allows representing human environmental impacts’ triphasic nature within the International Geological Timescale. Such an epoch captures humanity’s current planetary importance, with the Holocene and Late Pleistocene representing earlier phases of intensifying impacts. This formal framework empowers science and action toward planetary stewardship.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ambitious nitrogen abatement is required to mitigate future global PM2.5 air pollution toward the World Health Organization targets 要减轻未来全球 PM2.5 空气污染,实现世界卫生组织的目标,就必须大力减排氮气
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.1016/j.oneear.2024.08.007
Yixin Guo, Lin Zhang, Wilfried Winiwarter, Hans J.M. van Grinsven, Xiaolin Wang, Ke Li, Da Pan, Zehui Liu, Baojing Gu

Nitrogen oxides (NOx) and ammonia (NH3) contribute substantially to current global fine particulate matter (PM2.5) pollution. Their future role remains unclear and is complicated by interactions with background emissions. Here, we show that under climate mitigation scenarios, by 2050, a hypothetical phaseout of anthropogenic NH3 emissions would reduce PM2.5 by 20%–60% locally and be more effective than phasing out NOx. Reducing NH3 by 25%, instead, would be less effective than 25% NOx reduction for many regions. Future reductions of NOx and sulfuric dioxides from clean energy transitions would shift the nonlinear chemical regime of secondary inorganic aerosol formation toward NH3 saturation. The later NH3 controls are installed, the deeper the required reductions will be to be effective, although for many regions such levels are still within technical feasibility, while NOx controls will always remain effective. Nitrogen reductions remain useful for achieving the World Health Organization guideline target for PM2.5, and NH3 controls need to happen sooner rather than later.

氮氧化物(NOx)和氨气(NH3)是目前全球细颗粒物(PM2.5)污染的主要来源。它们未来的作用尚不明确,而且与背景排放的相互作用也使其变得复杂。在这里,我们展示了在气候减缓情景下,到 2050 年,假设逐步淘汰人为 NH3 排放将使当地 PM2.5 降低 20%-60%,并且比逐步淘汰氮氧化物更有效。在许多地区,减少 25% 的 NH3 反而不如减少 25% 的 NOx 有效。未来清洁能源转型带来的氮氧化物和二氧化硫的减少将使二次无机气溶胶形成的非线性化学机制向 NH3 饱和状态转变。尽管对许多地区而言,氮氧化物控制仍在技术可行性范围内,但越晚安装 NH3 控制装置,所需的减排量就越大,才能有效。减少氮仍然有助于实现世界卫生组织的 PM2.5 指导目标,而 NH3 控制则需要尽早进行。
{"title":"Ambitious nitrogen abatement is required to mitigate future global PM2.5 air pollution toward the World Health Organization targets","authors":"Yixin Guo, Lin Zhang, Wilfried Winiwarter, Hans J.M. van Grinsven, Xiaolin Wang, Ke Li, Da Pan, Zehui Liu, Baojing Gu","doi":"10.1016/j.oneear.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.007","url":null,"abstract":"<p>Nitrogen oxides (NO<sub>x</sub>) and ammonia (NH<sub>3</sub>) contribute substantially to current global fine particulate matter (PM<sub>2.5</sub>) pollution. Their future role remains unclear and is complicated by interactions with background emissions. Here, we show that under climate mitigation scenarios, by 2050, a hypothetical phaseout of anthropogenic NH<sub>3</sub> emissions would reduce PM<sub>2.5</sub> by 20%–60% locally and be more effective than phasing out NO<sub>x</sub>. Reducing NH<sub>3</sub> by 25%, instead, would be less effective than 25% NO<sub>x</sub> reduction for many regions. Future reductions of NO<sub>x</sub> and sulfuric dioxides from clean energy transitions would shift the nonlinear chemical regime of secondary inorganic aerosol formation toward NH<sub>3</sub> saturation. The later NH<sub>3</sub> controls are installed, the deeper the required reductions will be to be effective, although for many regions such levels are still within technical feasibility, while NO<sub>x</sub> controls will always remain effective. Nitrogen reductions remain useful for achieving the World Health Organization guideline target for PM<sub>2.5</sub>, and NH<sub>3</sub> controls need to happen sooner rather than later.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disproportionate low-elevation forest loss in over 65% of the world’s mountains calls for targeted conservation 世界上 65% 以上的山区低海拔森林丧失严重,需要有针对性地进行保护
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-04 DOI: 10.1016/j.oneear.2024.08.006
Yuang Chen, Richard A. Fuller, Tien Ming Lee, Fangyuan Hua
Forest loss is a leading threat to global biodiversity. For many mountains worldwide, forest loss appears to occur disproportionately at lower elevations. This pattern—if confirmed—means widespread loss and scarcity of lower-elevation forest habitat, with profound biodiversity implications within and beyond these elevations. However, there remains no global assessment of this pattern based on robustly mapped forest loss, crucially by disentangling forest loss from the natural absence of forest. We fill this gap and demonstrate disproportionate forest loss at lower elevations for >65% of all 769 mountains in the world’s forested ecoregions that we assessed. We find a clear lack of lower-elevation forest—most of which remains unprotected—and associated warmer and drier climatic conditions, explainable by high human impacts and low precipitation at these elevations. Our findings call for targeted forest protection and restoration at lower elevations for mountains worldwide, including integrated mountain-scale conservation planning for entire elevational gradients.
森林丧失是全球生物多样性面临的主要威胁。在全球许多山区,森林消失似乎不成比例地发生在海拔较低的地方。这种模式如果得到证实,意味着低海拔森林栖息地的普遍丧失和稀缺,对这些海拔地区内外的生物多样性产生深远影响。然而,目前还没有基于可靠的森林损失地图对这一模式进行全球性评估,关键是要将森林损失与森林的自然缺失区分开来。我们填补了这一空白,并证明在我们评估的全球森林生态区域的所有 769 座山脉中,有超过 65% 的山脉在海拔较低的地方出现了不成比例的森林损失。我们发现,低海拔地区明显缺乏森林--其中大部分仍未受到保护--同时气候条件也更加温暖干燥,这可以从这些海拔地区的高人为影响和低降水量得到解释。我们的研究结果呼吁对全球山区低海拔地区进行有针对性的森林保护和恢复,包括对整个海拔梯度进行山区尺度的综合保护规划。
{"title":"Disproportionate low-elevation forest loss in over 65% of the world’s mountains calls for targeted conservation","authors":"Yuang Chen, Richard A. Fuller, Tien Ming Lee, Fangyuan Hua","doi":"10.1016/j.oneear.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.006","url":null,"abstract":"Forest loss is a leading threat to global biodiversity. For many mountains worldwide, forest loss appears to occur disproportionately at lower elevations. This pattern—if confirmed—means widespread loss and scarcity of lower-elevation forest habitat, with profound biodiversity implications within and beyond these elevations. However, there remains no global assessment of this pattern based on robustly mapped forest loss, crucially by disentangling forest loss from the natural absence of forest. We fill this gap and demonstrate disproportionate forest loss at lower elevations for >65% of all 769 mountains in the world’s forested ecoregions that we assessed. We find a clear lack of lower-elevation forest—most of which remains unprotected—and associated warmer and drier climatic conditions, explainable by high human impacts and low precipitation at these elevations. Our findings call for targeted forest protection and restoration at lower elevations for mountains worldwide, including integrated mountain-scale conservation planning for entire elevational gradients.","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urgent climate action is needed to ensure effectiveness of protected areas for biodiversity benefits 需要采取紧急气候行动,确保保护区对生物多样性有益的有效性
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-02 DOI: 10.1016/j.oneear.2024.08.003
Akira S. Mori, Andrew Gonzalez, Rupert Seidl, Peter B. Reich, Laura Dee, Haruka Ohashi, Yann Hautier, Michel Loreau, Forest Isbell

The intertwined crises of biodiversity loss and climate change pose a significant sustainability challenge, threatening ecosystems and human well-being globally. Yet, the nuanced interplay between these challenges is often understated in policy dialogs. Global biodiversity targets, including 30% protection of the Earth’s surface by 2030, may fall short without robust climate change mitigation. Here, we illustrate that conservation through protected areas can effectively preserve forest productivity and carbon capture, which depend on tree diversity. However, failing to mitigate climate change diminishes the effectiveness of these areas, especially in warmer biomes. Even with optimal protected area selection, preserving tree diversity-dependent productivity could be compromised without significant climate change mitigation. Our findings emphasize the need to integrate climate change mitigation into biodiversity conservation policies to ensure the success of the 30 × 30 targets and sustain the ecosystem benefits biodiversity provides to society.

生物多样性丧失和气候变化这两个相互交织的危机对可持续性构成了重大挑战,威胁着全球的生态系统和人类福祉。然而,在政策对话中,这些挑战之间微妙的相互作用往往被低估。如果没有强有力的气候变化减缓措施,全球生物多样性目标(包括到 2030 年保护地球表面 30% 的生物多样性)可能无法实现。我们在此说明,通过保护区进行保护可以有效保持森林生产力和碳捕获,而这取决于树木的多样性。然而,如果不能减缓气候变化,这些保护区的效果就会大打折扣,尤其是在较暖的生物群落中。即使选择了最佳的保护区,如果没有显著的气候变化减缓措施,保护依赖于树木多样性的生产力也会受到影响。我们的研究结果表明,有必要将减缓气候变化纳入生物多样性保护政策,以确保 30×30 目标的成功实现,并维持生物多样性为社会提供的生态系统惠益。
{"title":"Urgent climate action is needed to ensure effectiveness of protected areas for biodiversity benefits","authors":"Akira S. Mori, Andrew Gonzalez, Rupert Seidl, Peter B. Reich, Laura Dee, Haruka Ohashi, Yann Hautier, Michel Loreau, Forest Isbell","doi":"10.1016/j.oneear.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.08.003","url":null,"abstract":"<p>The intertwined crises of biodiversity loss and climate change pose a significant sustainability challenge, threatening ecosystems and human well-being globally. Yet, the nuanced interplay between these challenges is often understated in policy dialogs. Global biodiversity targets, including 30% protection of the Earth’s surface by 2030, may fall short without robust climate change mitigation. Here, we illustrate that conservation through protected areas can effectively preserve forest productivity and carbon capture, which depend on tree diversity. However, failing to mitigate climate change diminishes the effectiveness of these areas, especially in warmer biomes. Even with optimal protected area selection, preserving tree diversity-dependent productivity could be compromised without significant climate change mitigation. Our findings emphasize the need to integrate climate change mitigation into biodiversity conservation policies to ensure the success of the 30 × 30 targets and sustain the ecosystem benefits biodiversity provides to society.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding soil phosphorus cycling for sustainable development: A review 了解土壤磷循环,促进可持续发展:综述
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-27 DOI: 10.1016/j.oneear.2024.07.020
Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard

Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.

土壤中的磷(P)会直接影响主要的可持续发展成果,即作物产量、水质和碳吸收。要优化磷的管理以改善可持续发展成果,需要从机理上了解磷的可用性和转移,同时需要高分辨率的空间数据。然而,目前还不清楚当前的测量技术、模型和地图是否能满足科学管理的要求。在此,我们回顾了在测量钾通量、量化钾可用性和绘制土壤钾资源图方面的最新进展,并讨论了对可持续发展成果的影响。我们发现,人们对土壤钾可用性的认识有了显著提高,但农艺应用和气候模型在很大程度上仍基于过时的概念。此外,我们还发现土壤钾资源的空间数据非常不确定,限制了当前钾地图的实用性。我们强调了改进现有工具的步骤,并强调这些改进需要与政策和技术发展齐头并进,以成功实现与钾相关的可持续发展目标。
{"title":"Understanding soil phosphorus cycling for sustainable development: A review","authors":"Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard","doi":"10.1016/j.oneear.2024.07.020","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.07.020","url":null,"abstract":"<p>Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summer Heat 夏日炎炎
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-16 DOI: 10.1016/j.oneear.2024.07.015

Summers have always been hot, but we are experiencing exceedingly intensive heat across the world. Global temperature records break headlines more frequently thanks to anthropogenic climate change. In response to the deadly heatwave of 2020—which engulfed Europe with record-breaking temperatures and caused tens of thousands of deaths—artist and climate activist Diane Burko created Summer Heat. This 7 × 13 ft painting illustrates the causes and effects of climate change clashing into each other by displaying the Earth’s continents underneath splashes of red and blue, which reflect on the EU record-breaking heat and melting glaciers, dripping across the canvas, juxtaposed with the iconic Keeling curve that presents the accumulation of CO2 in the Earth’s atmosphere based on continuous measurements taken at the Mauna Loa Observatory since 1958. This artwork was further used in a study and showed its positive influence on bridging political divisions in climate change.

夏季向来炎热,但我们正在经历全球范围内超强度的高温。由于人为的气候变化,全球气温记录更频繁地成为头条新闻。2020 年,致命的热浪席卷欧洲,气温创下历史新高,造成数万人死亡,对此,艺术家和气候活动家 Diane Burko 创作了《夏日炎炎》。这幅 7 × 13 英尺的画作展示了气候变化的原因和影响,画中的地球大陆在红色和蓝色的映衬下熠熠生辉,反映了欧盟破纪录的高温和冰川的融化,滴落在画布上,与标志性的基林曲线并列,基林曲线根据自 1958 年以来在莫纳罗亚天文台进行的连续测量,展示了地球大气中二氧化碳的积累情况。这幅作品被进一步用于一项研究,并显示出其对弥合气候变化方面的政治分歧的积极影响。
{"title":"Summer Heat","authors":"","doi":"10.1016/j.oneear.2024.07.015","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.07.015","url":null,"abstract":"<p>Summers have always been hot, but we are experiencing exceedingly intensive heat across the world. Global temperature records break headlines more frequently thanks to anthropogenic climate change. In response to the deadly heatwave of 2020—which engulfed Europe with record-breaking temperatures and caused tens of thousands of deaths—artist and climate activist Diane Burko created <em>Summer Heat</em>. This 7 × 13 ft painting illustrates the causes and effects of climate change clashing into each other by displaying the Earth’s continents underneath splashes of red and blue, which reflect on the EU record-breaking heat and melting glaciers, dripping across the canvas, juxtaposed with the iconic Keeling curve that presents the accumulation of CO<sub>2</sub> in the Earth’s atmosphere based on continuous measurements taken at the Mauna Loa Observatory since 1958. This artwork was further used in a <span><span>study</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> and showed its positive influence on bridging political divisions in climate change.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying extreme heat and social inequality in Global South cities: Recommendations for cross-cultural research 研究全球南部城市的极端高温和社会不平等问题:跨文化研究建议
IF 16.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-16 DOI: 10.1016/j.oneear.2024.07.021
Neha Agarwal, Ajay Nagpure, Anu Ramaswami

International research in Global South cities is urgently needed to address unprecedented heat, enervating humidity, and daunting social inequality projected to impact >3 billion urbanites in Asia and Africa. Yet, researchers are ill-equipped to navigate cultural and physiological challenges inherent in this work, for which we develop cross-cultural protocols.

全球南方城市急需开展国际研究,以应对预计将影响亚洲和非洲 30 亿城市居民的前所未有的高温、令人窒息的潮湿和令人生畏的社会不平等问题。然而,研究人员并不具备驾驭这项工作所固有的文化和生理挑战的能力,为此我们制定了跨文化协议。
{"title":"Studying extreme heat and social inequality in Global South cities: Recommendations for cross-cultural research","authors":"Neha Agarwal, Ajay Nagpure, Anu Ramaswami","doi":"10.1016/j.oneear.2024.07.021","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.07.021","url":null,"abstract":"<p>International research in Global South cities is urgently needed to address unprecedented heat, enervating humidity, and daunting social inequality projected to impact &gt;3 billion urbanites in Asia and Africa. Yet, researchers are ill-equipped to navigate cultural and physiological challenges inherent in this work, for which we develop cross-cultural protocols.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
One Earth
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1