Video platforms have become indispensable components within a diverse range of applications, serving various purposes in entertainment, e-learning, corporate training, online documentation, and news provision. As the volume and complexity of video content continue to grow, the need for personalized access features becomes an inevitable requirement to ensure efficient content consumption. To address this need, recommender systems have emerged as helpful tools providing personalized video access. By leveraging past user-specific video consumption data and the preferences of similar users, these systems excel in recommending videos that are highly relevant to individual users. This article presents a comprehensive overview of the current state of video recommender systems (VRS), exploring the algorithms used, their applications, and related aspects. In addition to an in-depth analysis of existing approaches, this review also addresses unresolved research challenges within this domain. These unexplored areas offer exciting opportunities for advancements and innovations, aiming to enhance the accuracy and effectiveness of personalized video recommendations. Overall, this article serves as a valuable resource for researchers, practitioners, and stakeholders in the video domain. It offers insights into cutting-edge algorithms, successful applications, and areas that merit further exploration to advance the field of video recommendation.
Sustainability development goals (SDGs) are regarded as a universal call to action with the overall objectives of planet protection, ending of poverty, and ensuring peace and prosperity for all people. In order to achieve these objectives, different AI technologies play a major role. Specifically, recommender systems can provide support for organizations and individuals to achieve the defined goals. Recommender systems integrate AI technologies such as machine learning, explainable AI (XAI), case-based reasoning, and constraint solving in order to find and explain user-relevant alternatives from a potentially large set of options. In this article, we summarize the state of the art in applying recommender systems to support the achievement of sustainability development goals. In this context, we discuss open issues for future research.
Real-time analysis of large multimedia streams is nowadays made efficient by the existence of several Big Data streaming platforms, like Apache Flink and Samza. However, the use of such platforms is difficult due to the fact that facilities they offer are often too raw to be effectively exploited by analysts. We describe the evolution of RAM3S, a software infrastructure for the integration of Big Data stream processing platforms, to SPAF, an abstraction framework able to provide programmers with a simple but powerful API to ease the development of stream processing applications. By using SPAF, the programmer can easily implement real-time complex analyses of massive streams on top of a distributed computing infrastructure, able to manage the volume and velocity of Big Data streams, thus effectively transforming data into value.
[This corrects the article DOI: 10.3389/fdata.2023.1197471.].
Introduction: The main goal of this study is to develop a methodology for the organization of experimental selection of operator personnel based on the analysis of their behavior under the influence of micro-stresses.
Methods: A human-machine interface model has been developed, which considers the change in the functional state of the human operator. The presented concept of the difficulty of detecting the object of attention contributed to developing a particular sequence of ordinary test images with stressor images included in it and presented models of the flow of presenting test images to the recipient.
Results: With the help of descriptive statistics, the parameters of individual box-plot diagrams were determined, and the recipient group was clustered.
Discussion: Overall, the proposed approach based on the example of the conducted grouping makes it possible to ensure the objectivity and efficiency of the professional selection of applicants for operator specialties.
This paper aims to detect anemia using images of the lip mucosa, where the skin tissue is thin, and to confirm the feasibility of detecting anemia noninvasively and in the home environment using machine learning (ML). Data were collected from 138 patients, including 100 women and 38 men. Six ML algorithms: artificial neural network (ANN), decision tree (DT), k-nearest neighbors (KNN), logistic regression (LR), naive bayes (NB), and support vector machine (SVM) which are widely used in medical applications, were used to classify the collected data. Two different data types were obtained from participants' images (RGB red color values and HSV saturation values) as features, with age, sex, and hemoglobin levels utilized to perform classification. The ML algorithm was used to analyze and classify images of the lip mucosa quickly and accurately, potentially increasing the efficiency of anemia screening programs. The accuracy, precision, recall, and F-measure were evaluated to assess how well ML models performed in predicting anemia. The results showed that NB reported the highest accuracy (96%) among the other ML models used. DT, KNN and ANN reported an accuracies of (93%), while LR and SVM had an accuracy of (79%) and (75%) receptively. This research suggests that employing ML approaches to identify anemia will help classify the diagnosis, which will then help to create efficient preventive measures. Compared to blood tests, this noninvasive procedure is more practical and accessible to patients. Furthermore, ML algorithms may be created and trained to assess lip mucosa photos at a minimal cost, making it an affordable screening method in regions with a shortage of healthcare resources.