Pub Date : 2020-01-01Epub Date: 2020-10-01DOI: 10.1186/s13662-020-02997-z
Abdelhamid Ajbar, Rubayyi T Alqahtani
In this paper, the dynamical behavior of a SEIR epidemic system that takes into account governmental action and individual reaction is investigated. The transmission rate takes into account the impact of governmental action modeled as a step function while the decreasing contacts among individuals responding to the severity of the pandemic is modeled as a decreasing exponential function. We show that the proposed model is capable of predicting Hopf bifurcation points for a wide range of physically realistic parameters for the COVID-19 disease. In this regard, the model predicts periodic behavior that emanates from one Hopf point. The model also predicts stable oscillations connecting two Hopf points. The effect of the different model parameters on the existence of such periodic behavior is numerically investigated. Useful diagrams are constructed that delineate the range of periodic behavior predicted by the model.
{"title":"Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction.","authors":"Abdelhamid Ajbar, Rubayyi T Alqahtani","doi":"10.1186/s13662-020-02997-z","DOIUrl":"https://doi.org/10.1186/s13662-020-02997-z","url":null,"abstract":"<p><p>In this paper, the dynamical behavior of a SEIR epidemic system that takes into account governmental action and individual reaction is investigated. The transmission rate takes into account the impact of governmental action modeled as a step function while the decreasing contacts among individuals responding to the severity of the pandemic is modeled as a decreasing exponential function. We show that the proposed model is capable of predicting Hopf bifurcation points for a wide range of physically realistic parameters for the COVID-19 disease. In this regard, the model predicts periodic behavior that emanates from one Hopf point. The model also predicts stable oscillations connecting two Hopf points. The effect of the different model parameters on the existence of such periodic behavior is numerically investigated. Useful diagrams are constructed that delineate the range of periodic behavior predicted by the model.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"541"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02997-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38554653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-05-27DOI: 10.1186/s13662-020-02709-7
Mohammed S Abdo, Satish K Panchal, Kamal Shah, Thabet Abdeljawad
In this manuscript, the fractional Atangana-Baleanu-Caputo model of prey and predator is studied theoretically and numerically. The existence and Ulam-Hyers stability results are obtained by applying fixed point theory and nonlinear analysis. The approximation solutions for the considered model are discussed via the fractional Adams Bashforth method. Moreover, the behavior of the solution to the given model is explained by graphical representations through the numerical simulations. The obtained results play an important role in developing the theory of fractional analytical dynamic of many biological systems.
{"title":"Existence theory and numerical analysis of three species prey-predator model under Mittag-Leffler power law.","authors":"Mohammed S Abdo, Satish K Panchal, Kamal Shah, Thabet Abdeljawad","doi":"10.1186/s13662-020-02709-7","DOIUrl":"https://doi.org/10.1186/s13662-020-02709-7","url":null,"abstract":"<p><p>In this manuscript, the fractional Atangana-Baleanu-Caputo model of prey and predator is studied theoretically and numerically. The existence and Ulam-Hyers stability results are obtained by applying fixed point theory and nonlinear analysis. The approximation solutions for the considered model are discussed via the fractional Adams Bashforth method. Moreover, the behavior of the solution to the given model is explained by graphical representations through the numerical simulations. The obtained results play an important role in developing the theory of fractional analytical dynamic of many biological systems.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"249"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02709-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38012752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-09-05DOI: 10.1186/s13662-020-02934-0
S Ahmad, A Ullah, K Shah, S Salahshour, A Ahmadian, T Ciano
In this paper, a novel coronavirus infection system with a fuzzy fractional differential equation defined in Caputo's sense is developed. By using the fuzzy Laplace method coupled with Adomian decomposition transform, numerical results are obtained for better understanding of the dynamical structures of the physical behavior of COVID-19. Such behavior on the general properties of RNA in COVID-19 is also investigated for the governing model. The results demonstrate the efficiency of the proposed approach to address the uncertainty condition in the pandemic situation.
{"title":"Fuzzy fractional-order model of the novel coronavirus.","authors":"S Ahmad, A Ullah, K Shah, S Salahshour, A Ahmadian, T Ciano","doi":"10.1186/s13662-020-02934-0","DOIUrl":"10.1186/s13662-020-02934-0","url":null,"abstract":"<p><p>In this paper, a novel coronavirus infection system with a fuzzy fractional differential equation defined in Caputo's sense is developed. By using the fuzzy Laplace method coupled with Adomian decomposition transform, numerical results are obtained for better understanding of the dynamical structures of the physical behavior of COVID-19. Such behavior on the general properties of RNA in COVID-19 is also investigated for the governing model. The results demonstrate the efficiency of the proposed approach to address the uncertainty condition in the pandemic situation.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"472"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38374887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-10-16DOI: 10.1186/s13662-020-03021-0
Qinxu Ding, Patricia J Y Wong
In this paper, we shall solve a time-fractional nonlinear Schrödinger equation by using the quintic non-polynomial spline and the L1 formula. The unconditional stability, unique solvability and convergence of our numerical scheme are proved by the Fourier method. It is shown that our method is sixth order accurate in the spatial dimension and th order accurate in the temporal dimension, where γ is the fractional order. The efficiency of the proposed numerical scheme is further illustrated by numerical experiments, meanwhile the simulation results indicate better performance over previous work in the literature.
{"title":"Quintic non-polynomial spline for time-fractional nonlinear Schrödinger equation.","authors":"Qinxu Ding, Patricia J Y Wong","doi":"10.1186/s13662-020-03021-0","DOIUrl":"10.1186/s13662-020-03021-0","url":null,"abstract":"<p><p>In this paper, we shall solve a time-fractional nonlinear Schrödinger equation by using the quintic non-polynomial spline and the <i>L</i>1 formula. The unconditional stability, unique solvability and convergence of our numerical scheme are proved by the Fourier method. It is shown that our method is sixth order accurate in the spatial dimension and <math><mo>(</mo> <mn>2</mn> <mo>-</mo> <mi>γ</mi> <mo>)</mo></math> th order accurate in the temporal dimension, where <i>γ</i> is the fractional order. The efficiency of the proposed numerical scheme is further illustrated by numerical experiments, meanwhile the simulation results indicate better performance over previous work in the literature.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"577"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38606596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-09-24DOI: 10.1186/s13662-020-02958-6
M Radha, S Balamuralitharan
This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter τ concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India's current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country's current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.
{"title":"A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay.","authors":"M Radha, S Balamuralitharan","doi":"10.1186/s13662-020-02958-6","DOIUrl":"10.1186/s13662-020-02958-6","url":null,"abstract":"<p><p>This paper deals with a general SEIR model for the coronavirus disease 2019 (COVID-19) with the effect of time delay proposed. We get the stability theorems for the disease-free equilibrium and provide adequate situations of the COVID-19 transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation parameter <i>τ</i> concerns the effects of time delay and we demonstrate that the locally asymptotic stability holds for the present equilibrium. The reproduction number is brief in less than or greater than one, and it effectively is controlling the COVID-19 infection outbreak and subsequently reveals insight into understanding the patterns of the flare-up. We have included eight parameters and the least square method allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life data. It is one of India's current pandemic models that have been studied for the time being. This Covid19 SEIR model can apply with or without delay to all country's current pandemic region, after estimating parameter values from their data. The sensitivity of seven parameters has also been explored. The paper also examines the impact of immune response time delay and the importance of determining essential parameters such as the transmission rate using sensitivity indices analysis. The numerical experiment is calculated to illustrate the theoretical results.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"523"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-05-01DOI: 10.1186/s13662-020-02655-4
Feng Qi, Dongkyu Lim
In the paper, the authors consider a ratio of finite many gamma functions and find its monotonicity properties such as complete monotonicity, the Bernstein function property, and logarithmically complete monotonicity.
{"title":"Monotonicity properties for a ratio of finite many gamma functions.","authors":"Feng Qi, Dongkyu Lim","doi":"10.1186/s13662-020-02655-4","DOIUrl":"10.1186/s13662-020-02655-4","url":null,"abstract":"<p><p>In the paper, the authors consider a ratio of finite many gamma functions and find its monotonicity properties such as complete monotonicity, the Bernstein function property, and logarithmically complete monotonicity.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"193"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37905254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-08-03DOI: 10.1186/s13662-020-02831-6
Wei Gao, Haci Mehmet Baskonus, Li Shi
According to the report presented by the World Health Organization, a new member of viruses, namely, coronavirus, shortly 2019-nCoV, which arised in Wuhan, China, on January 7, 2020, has been introduced to the literature. The main aim of this paper is investigating and finding the optimal values for better understanding the mathematical model of the transfer of 2019-nCoV from the reservoir to people. This model, named Bats-Hosts-Reservoir-People coronavirus (BHRPC) model, is based on bats as essential animal beings. By using a powerful numerical method we obtain simulations of its spreading under suitably chosen parameters. Whereas the obtained results show the effectiveness of the theoretical method considered for the governing system, the results also present much light on the dynamic behavior of the Bats-Hosts-Reservoir-People transmission network coronavirus model.
{"title":"New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system.","authors":"Wei Gao, Haci Mehmet Baskonus, Li Shi","doi":"10.1186/s13662-020-02831-6","DOIUrl":"https://doi.org/10.1186/s13662-020-02831-6","url":null,"abstract":"<p><p>According to the report presented by the World Health Organization, a new member of viruses, namely, coronavirus, shortly 2019-nCoV, which arised in Wuhan, China, on January 7, 2020, has been introduced to the literature. The main aim of this paper is investigating and finding the optimal values for better understanding the mathematical model of the transfer of 2019-nCoV from the reservoir to people. This model, named Bats-Hosts-Reservoir-People coronavirus (BHRPC) model, is based on bats as essential animal beings. By using a powerful numerical method we obtain simulations of its spreading under suitably chosen parameters. Whereas the obtained results show the effectiveness of the theoretical method considered for the governing system, the results also present much light on the dynamic behavior of the Bats-Hosts-Reservoir-People transmission network coronavirus model.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"391"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02831-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38297076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-09-11DOI: 10.1186/s13662-020-02943-z
Samia Bushnaq, Kamal Shah, Hussam Alrabaiah
This paper investigates a new model on coronavirus-19 disease (COVID-19) with three compartments including susceptible, infected, and recovered class under Mittag-Leffler type derivative. The mentioned derivative has been introduced by Atangana, Baleanu, and Caputo abbreviated as . Upon utilizing fixed point theory, we first prove the existence of at least one solution for the considered model and its uniqueness. Also, some results about stability of Ulam-Hyers type are also established. By applying a numerical technique called fractional Adams-Bashforth (AB) method, we develop a scheme for the approximate solutions to the considered model. Using some real available data, we perform the concerned numerical simulation corresponding to different values of fractional order.
{"title":"On modeling of coronavirus-19 disease under Mittag-Leffler power law.","authors":"Samia Bushnaq, Kamal Shah, Hussam Alrabaiah","doi":"10.1186/s13662-020-02943-z","DOIUrl":"https://doi.org/10.1186/s13662-020-02943-z","url":null,"abstract":"<p><p>This paper investigates a new model on coronavirus-19 disease (COVID-19) with three compartments including susceptible, infected, and recovered class under Mittag-Leffler type derivative. The mentioned derivative has been introduced by Atangana, Baleanu, and Caputo abbreviated as <math><mo>(</mo> <mi>ABC</mi> <mo>)</mo></math> . Upon utilizing fixed point theory, we first prove the existence of at least one solution for the considered model and its uniqueness. Also, some results about stability of Ulam-Hyers type are also established. By applying a numerical technique called fractional Adams-Bashforth (AB) method, we develop a scheme for the approximate solutions to the considered model. Using some real available data, we perform the concerned numerical simulation corresponding to different values of fractional order.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"487"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02943-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38386901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-11-25DOI: 10.1186/s13662-020-03116-8
Ali Raza, Ali Ahmadian, Muhammad Rafiq, Soheil Salahshour, Muhammad Naveed, Massimiliano Ferrara, Atif Hassan Soori
In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.
{"title":"Modeling the effect of delay strategy on transmission dynamics of HIV/AIDS disease.","authors":"Ali Raza, Ali Ahmadian, Muhammad Rafiq, Soheil Salahshour, Muhammad Naveed, Massimiliano Ferrara, Atif Hassan Soori","doi":"10.1186/s13662-020-03116-8","DOIUrl":"https://doi.org/10.1186/s13662-020-03116-8","url":null,"abstract":"<p><p>In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"663"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-03116-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38651701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-06-18DOI: 10.1186/s13662-020-02762-2
Dumitru Baleanu, Hakimeh Mohammadi, Shahram Rezapour
We present a fractional-order model for the COVID-19 transmission with Caputo-Fabrizio derivative. Using the homotopy analysis transform method (HATM), which combines the method of homotopy analysis and Laplace transform, we solve the problem and give approximate solution in convergent series. We prove the existence of a unique solution and the stability of the iteration approach by using fixed point theory. We also present numerical results to simulate virus transmission and compare the results with those of the Caputo derivative.
{"title":"A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative.","authors":"Dumitru Baleanu, Hakimeh Mohammadi, Shahram Rezapour","doi":"10.1186/s13662-020-02762-2","DOIUrl":"https://doi.org/10.1186/s13662-020-02762-2","url":null,"abstract":"<p><p>We present a fractional-order model for the COVID-19 transmission with Caputo-Fabrizio derivative. Using the homotopy analysis transform method (HATM), which combines the method of homotopy analysis and Laplace transform, we solve the problem and give approximate solution in convergent series. We prove the existence of a unique solution and the stability of the iteration approach by using fixed point theory. We also present numerical results to simulate virus transmission and compare the results with those of the Caputo derivative.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"299"},"PeriodicalIF":4.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02762-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38073700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}