CTCF (CCCTC-binding factor) is a transcription regulator with hundreds of binding sites in the human genome. It has a main function as an insulator protein, defining together with cohesins the boundaries of areas of the genome called topologically associating domains (TADs). TADs contain regulatory elements such as enhancers which function as regulators of the transcription of genes inside the boundaries of the TAD while they are restricted from regulating genes outside these boundaries. This paper will examine the most common genetic lesions of CTCF as well as its related protein CTCFL (CTCF-like also called BORIS) in cancer using publicly available data from published genomic studies. Cancer types where abnormalities in the two genes are more common will be examined for possible associations with underlying repair defects or other prevalent genetic lesions. The putative functional effects in CTCF and CTCFL lesions will also be explored.
{"title":"Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in Cancer: An Analysis from Published Genomic Studies.","authors":"Ioannis A Voutsadakis","doi":"10.3390/ht7040030","DOIUrl":"https://doi.org/10.3390/ht7040030","url":null,"abstract":"<p><p>CTCF (CCCTC-binding factor) is a transcription regulator with hundreds of binding sites in the human genome. It has a main function as an insulator protein, defining together with cohesins the boundaries of areas of the genome called topologically associating domains (TADs). TADs contain regulatory elements such as enhancers which function as regulators of the transcription of genes inside the boundaries of the TAD while they are restricted from regulating genes outside these boundaries. This paper will examine the most common genetic lesions of CTCF as well as its related protein CTCFL (CTCF-like also called BORIS) in cancer using publicly available data from published genomic studies. Cancer types where abnormalities in the two genes are more common will be examined for possible associations with underlying repair defects or other prevalent genetic lesions. The putative functional effects in CTCF and CTCFL lesions will also be explored.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7040030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36537708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cytochrome P450 (CYP) is a critical drug-metabolizing enzyme superfamily. Modulation of CYP enzyme activities has the potential to cause drug⁻drug/herb interactions. Drug⁻drug/herb interactions can lead to serious adverse drug reactions (ADRs) or drug failures. Therefore, there is a need to examine the modulatory effects of new drug entities or herbal preparations on a wide range of CYP isoforms. The classic method of quantifying CYP enzyme activities is based on high-performance liquid chromatography (HPLC), which is time- and reagent-consuming. In the past two decades, high-throughput screening methods including fluorescence-based, luminescence-based, and mass-spectrometry-based assays have been developed and widely applied to estimate CYP enzyme activities. In general, these methods are faster and use lower volume of reagents than HPLC. However, each high-throughput method has its own limitations. Investigators may make a selection of these methods based on the available equipment in the laboratory, budget, and enzyme sources supplied. Furthermore, the current high-throughput systems should look into developing a reliable automation mechanism to accomplish ultra-high-throughput screening in the near future.
{"title":"Current High-Throughput Approaches of Screening Modulatory Effects of Xenobiotics on Cytochrome P450 (CYP) Enzymes.","authors":"Yee Tze Ung, Chin Eng Ong, Yan Pan","doi":"10.3390/ht7040029","DOIUrl":"https://doi.org/10.3390/ht7040029","url":null,"abstract":"<p><p>Cytochrome P450 (CYP) is a critical drug-metabolizing enzyme superfamily. Modulation of CYP enzyme activities has the potential to cause drug⁻drug/herb interactions. Drug⁻drug/herb interactions can lead to serious adverse drug reactions (ADRs) or drug failures. Therefore, there is a need to examine the modulatory effects of new drug entities or herbal preparations on a wide range of CYP isoforms. The classic method of quantifying CYP enzyme activities is based on high-performance liquid chromatography (HPLC), which is time- and reagent-consuming. In the past two decades, high-throughput screening methods including fluorescence-based, luminescence-based, and mass-spectrometry-based assays have been developed and widely applied to estimate CYP enzyme activities. In general, these methods are faster and use lower volume of reagents than HPLC. However, each high-throughput method has its own limitations. Investigators may make a selection of these methods based on the available equipment in the laboratory, budget, and enzyme sources supplied. Furthermore, the current high-throughput systems should look into developing a reliable automation mechanism to accomplish ultra-high-throughput screening in the near future.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7040029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36541024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Scionti, Maria Teresa Di Martino, Licia Pensabene, Valentina Bruni, Daniela Concolino
Submicroscopic chromosomal copy number variations (CNVs), such as deletions and duplications, account for about 15⁻20% of patients affected with developmental delay, intellectual disability, multiple congenital anomalies, and autism spectrum disorder. Most of CNVs are de novo or inherited rearrangements with clinical relevance, but there are also rare inherited imbalances with unknown significance that make difficult the clinical management and genetic counselling. Chromosomal microarrays analysis (CMA) are recognized as the first-line test for CNV detection and are now routinely used in the clinical diagnostic laboratory. The recent use of CMA platforms that combine classic copy number analysis with single-nucleotide polymorphism (SNP) genotyping has increased the diagnostic yields. Here we discuss the application of the Cytoscan high-density (HD) SNP-array for the detection of CNVs. We provide an overview of molecular analyses involved in identifying pathogenic CNVs and highlight important guidelines to establish pathogenicity of CNV.
{"title":"The Cytoscan HD Array in the Diagnosis of Neurodevelopmental Disorders.","authors":"Francesca Scionti, Maria Teresa Di Martino, Licia Pensabene, Valentina Bruni, Daniela Concolino","doi":"10.3390/ht7030028","DOIUrl":"https://doi.org/10.3390/ht7030028","url":null,"abstract":"<p><p>Submicroscopic chromosomal copy number variations (CNVs), such as deletions and duplications, account for about 15⁻20% of patients affected with developmental delay, intellectual disability, multiple congenital anomalies, and autism spectrum disorder. Most of CNVs are de novo or inherited rearrangements with clinical relevance, but there are also rare inherited imbalances with unknown significance that make difficult the clinical management and genetic counselling. Chromosomal microarrays analysis (CMA) are recognized as the first-line test for CNV detection and are now routinely used in the clinical diagnostic laboratory. The recent use of CMA platforms that combine classic copy number analysis with single-nucleotide polymorphism (SNP) genotyping has increased the diagnostic yields. Here we discuss the application of the Cytoscan high-density (HD) SNP-array for the detection of CNVs. We provide an overview of molecular analyses involved in identifying pathogenic CNVs and highlight important guidelines to establish pathogenicity of CNV.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36498121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabina Calderón-Rosete, Juan Antonio González-Barrios, Manuel Lara-Lozano, Celia Piña-Leyva, Leonardo Rodríguez-Sosa
The freshwater crayfish Procambarus clarkii is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from P. clarkii to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for P. clarkii. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.
{"title":"Transcriptional Identification of Related Proteins in the Immune System of the Crayfish <i>Procambarus clarkii</i>.","authors":"Gabina Calderón-Rosete, Juan Antonio González-Barrios, Manuel Lara-Lozano, Celia Piña-Leyva, Leonardo Rodríguez-Sosa","doi":"10.3390/ht7030026","DOIUrl":"10.3390/ht7030026","url":null,"abstract":"<p><p>The freshwater crayfish <i>Procambarus clarkii</i> is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from <i>P. clarkii</i> to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for <i>P. clarkii</i>. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36489882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afshan Masood, Hicham Benabdelkamel, Assim A Alfadda
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
{"title":"Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity.","authors":"Afshan Masood, Hicham Benabdelkamel, Assim A Alfadda","doi":"10.3390/ht7030027","DOIUrl":"https://doi.org/10.3390/ht7030027","url":null,"abstract":"<p><p>Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36487305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariel Gullian Klanian, Mariana Delgadillo Díaz, Maria José Sánchez Solís
The present study aimed at determining the histamine production capacity of Gram (+) and Gram (-) bacteria isolated from Octopus maya, along with identifying the presence of amino acid decarboxylase genes. Of the total 80 psychrotrophic microorganisms, 32 strains were identified as histamine-forming bacteria. The recombinant DNA technique was used for genotypic identification of histidine (hdc), ornithine (odc), and lysine decarboxylases (ldc) genes. Thirty-two strains were able to produce 60⁻100 ppm in trypticase soy broth with 1.0% l-histidine after 6 h at 20 °C. NR6B showed 98% homology with Hafnia alvei. NR73 represented 18.8% of the total isolates and showed 98% homology with Enterobacter xianfengensis and Enterobacter cloacae. NR6A represented 6% of the total isolates, which were identified as Lactococcus sp. The hdc gen from NR6B showed 100% identity with hdc from Morganella morganii; ldc showed 97.7% identity with ldc from Citrobacter freundii. The Odc gene was detected only in NR73 and showed 100% identity with Enterobacter sp. All the isolated were identified as weak histamine⁻former. The ingestion of a food containing small amounts of histamine has little effect on humans; however, the formation of biogenic amines is often considered as an indicator of hygienic quality; this emphasizes the importance of improving good management practices and storage.
{"title":"Molecular Characterization of Histamine-Producing Psychrotrophic Bacteria Isolated from Red Octopus (<i>Octopus maya</i>) in Refrigerated Storage.","authors":"Mariel Gullian Klanian, Mariana Delgadillo Díaz, Maria José Sánchez Solís","doi":"10.3390/ht7030025","DOIUrl":"10.3390/ht7030025","url":null,"abstract":"<p><p>The present study aimed at determining the histamine production capacity of Gram (+) and Gram (-) bacteria isolated from <i>Octopus maya</i>, along with identifying the presence of amino acid decarboxylase genes. Of the total 80 psychrotrophic microorganisms, 32 strains were identified as histamine-forming bacteria. The recombinant DNA technique was used for genotypic identification of histidine (<i>hdc</i>), ornithine (<i>odc</i>), and lysine decarboxylases (<i>ldc</i>) genes. Thirty-two strains were able to produce 60⁻100 ppm in trypticase soy broth with 1.0% l-histidine after 6 h at 20 °C. NR6B showed 98% homology with <i>Hafnia alvei</i>. NR73 represented 18.8% of the total isolates and showed 98% homology with <i>Enterobacter xianfengensis</i> and <i>Enterobacter cloacae</i>. NR6A represented 6% of the total isolates, which were identified as <i>Lactococcus</i> sp. The <i>hdc</i> gen from NR6B showed 100% identity with <i>hdc</i> from <i>Morganella morganii</i>; <i>ldc</i> showed 97.7% identity with <i>ldc</i> from <i>Citrobacter freundii</i>. The <i>Odc</i> gene was detected only in NR73 and showed 100% identity with <i>Enterobacter</i> sp. All the isolated were identified as weak histamine⁻former. The ingestion of a food containing small amounts of histamine has little effect on humans; however, the formation of biogenic amines is often considered as an indicator of hygienic quality; this emphasizes the importance of improving good management practices and storage.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36459703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is increasingly common for experiments in biology and medicine to involve large numbers of hypothesis tests. A natural graphical method for visualizing these tests is to construct a histogram from the p-values of these tests. In this article, we examine the shapes, both regular and irregular, that these histograms can take on, as well as present simple inferential procedures that help to interpret the shapes in terms of diagnosing potential problems with the experiment. We examine potential causes of these problems in detail, and discuss potential remedies. Throughout, examples of irregular-looking p-value histograms are provided and based on case studies involving real biological experiments.
{"title":"<i>p</i>-Value Histograms: Inference and Diagnostics.","authors":"Patrick Breheny, Arnold Stromberg, Joshua Lambert","doi":"10.3390/ht7030023","DOIUrl":"https://doi.org/10.3390/ht7030023","url":null,"abstract":"<p><p>It is increasingly common for experiments in biology and medicine to involve large numbers of hypothesis tests. A natural graphical method for visualizing these tests is to construct a histogram from the <i>p</i>-values of these tests. In this article, we examine the shapes, both regular and irregular, that these histograms can take on, as well as present simple inferential procedures that help to interpret the shapes in terms of diagnosing potential problems with the experiment. We examine potential causes of these problems in detail, and discuss potential remedies. Throughout, examples of irregular-looking <i>p</i>-value histograms are provided and based on case studies involving real biological experiments.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36473958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela Berger, Aviva Rakhamimova, Andrew Pollack, Zvi Loewy
The oral cavity harbors hundreds of microbial species that are present either as planktonic cells or incorporated into biofilms. The majority of the oral microbes are commensal organisms. Those that are pathogenic microbes can result in oral infections, and at times can initiate systemic diseases. Biofilms that contain pathogens are challenging to control. Many conventional antimicrobials have proven to be ineffective. Recent advances in science and technology are providing new approaches for pathogen control and containment and methods to characterize biofilms. This perspective provides (1) a general understanding of biofilm development; (2) a description of emerging chemical and biological methods to control oral biofilms; and (3) an overview of high-throughput analytical approaches to analyze biofilms.
{"title":"Oral Biofilms: Development, Control, and Analysis.","authors":"Daniela Berger, Aviva Rakhamimova, Andrew Pollack, Zvi Loewy","doi":"10.3390/ht7030024","DOIUrl":"https://doi.org/10.3390/ht7030024","url":null,"abstract":"<p><p>The oral cavity harbors hundreds of microbial species that are present either as planktonic cells or incorporated into biofilms. The majority of the oral microbes are commensal organisms. Those that are pathogenic microbes can result in oral infections, and at times can initiate systemic diseases. Biofilms that contain pathogens are challenging to control. Many conventional antimicrobials have proven to be ineffective. Recent advances in science and technology are providing new approaches for pathogen control and containment and methods to characterize biofilms. This perspective provides (1) a general understanding of biofilm development; (2) a description of emerging chemical and biological methods to control oral biofilms; and (3) an overview of high-throughput analytical approaches to analyze biofilms.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36478509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reports on the modification of two synthetic steps in the usual protocol used for obtaining EMICORON. EMICORON is a benzo[ghi]perylen-diimide, which was synthesized for the first time in our laboratory in 2012, and has shown to have in vivo antitumor activities that interferes with the tumor growth and development using a multi-target mechanism of action. The provided modifications, which involved the reaction times, the reaction conditions, and the work-up procedures, allowed the global yield of the process to be increased from 28% to about 40%. Thus, this new procedure may be more suitable for recovering higher amounts of EMICORON to be used in further preclinical studies.
{"title":"New Developments in the Synthesis of EMICORON.","authors":"Massimo Pitorri, Marco Franceschin, Ilaria Serafini, Alessandro Ciccòla, Claudio Frezza, Armandodoriano Bianco","doi":"10.3390/ht7030022","DOIUrl":"https://doi.org/10.3390/ht7030022","url":null,"abstract":"<p><p>This paper reports on the modification of two synthetic steps in the usual protocol used for obtaining EMICORON. EMICORON is a benzo[<i>ghi</i>]perylen-diimide, which was synthesized for the first time in our laboratory in 2012, and has shown to have in vivo antitumor activities that interferes with the tumor growth and development using a multi-target mechanism of action. The provided modifications, which involved the reaction times, the reaction conditions, and the work-up procedures, allowed the global yield of the process to be increased from 28% to about 40%. Thus, this new procedure may be more suitable for recovering higher amounts of EMICORON to be used in further preclinical studies.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36441194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Nadia Razali, Nur Hafizah Hashim, Adam Thean Chor Leow, Abu Bakar Salleh
A functional mini protein can be developed by miniaturising its size. The minimisation technique provides an excellent model system for studying native enzymes, especially in creating an alternative novel biocatalyst. Miniaturised proteins may have enhanced stability, a crucial characteristic for large-scale production and industrial applications. In this study, a huge enzyme molecule, known as diamine oxidase (DAO, comprising 700 amino acids), was selected to undergo the process. By retaining the arrangement of the original functional sites of DAO in the fourth domain, a mini DAO can be designed via homology modelling. After several downsizing processes, a final configuration of 220 amino acids displayed high binding affinity towards histamine, a short-chain substrate that was catalysed by the parental DAO. The configuration also showed enhanced affinity towards a long-chain substrate known as spermidine. The gene for the designed protein was cloned and expressed in pET102/TOPO vector and overexpressed in E. coli BL21 (DE3). The new mini DAO had similar temperature tolerance and versatile substrates specificity characteristics as its parental protein. An active mini-protein with these characteristics is potentially useful for several applications such as detecting biogenic amines in the biological fluids and the environment that may give rise to health issues.
{"title":"Conformational Design and Characterisation of a Truncated Diamine Oxidase from <i>Arthrobacter globiformis</i>.","authors":"Nur Nadia Razali, Nur Hafizah Hashim, Adam Thean Chor Leow, Abu Bakar Salleh","doi":"10.3390/ht7030021","DOIUrl":"https://doi.org/10.3390/ht7030021","url":null,"abstract":"<p><p>A functional mini protein can be developed by miniaturising its size. The minimisation technique provides an excellent model system for studying native enzymes, especially in creating an alternative novel biocatalyst. Miniaturised proteins may have enhanced stability, a crucial characteristic for large-scale production and industrial applications. In this study, a huge enzyme molecule, known as diamine oxidase (DAO, comprising 700 amino acids), was selected to undergo the process. By retaining the arrangement of the original functional sites of DAO in the fourth domain, a mini DAO can be designed via homology modelling. After several downsizing processes, a final configuration of 220 amino acids displayed high binding affinity towards histamine, a short-chain substrate that was catalysed by the parental DAO. The configuration also showed enhanced affinity towards a long-chain substrate known as spermidine. The gene for the designed protein was cloned and expressed in pET102/TOPO vector and overexpressed in <i>E. coli</i> BL21 (DE3). The new mini DAO had similar temperature tolerance and versatile substrates specificity characteristics as its parental protein. An active mini-protein with these characteristics is potentially useful for several applications such as detecting biogenic amines in the biological fluids and the environment that may give rise to health issues.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7030021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36431115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}