Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of Bifidobacterium in the gut microbiome of breasted infants and stool pH, suggesting that this taxon plays a key role in determining the pH in the gut. Bifidobacterium longum subsp. infantis is uniquely equipped to metabolize human milk oligosaccharides (HMO) from breastmilk into acidic end products, mainly lactate and acetate. The presence of these acidic compounds in the infant gut is linked to a lower stool pH. Conversely, infants lacking B. infantis have a significantly higher stool pH, carry a higher abundance of potential pathogens and mucus-eroding bacteria in their gut microbiomes, and have signs of chronic enteric inflammation. This suggests the presence of B. infantis and low intestinal pH may be critical to maintaining a protective environment in the infant gut. Here, we summarize recent studies demonstrating that feeding B. infantis EVC001 to breastfed infants results in significantly lower fecal pH compared to controls and propose that low pH is one critical factor in preventing the invasion and overgrowth of harmful bacteria in the infant gut, a process known as colonization resistance.
{"title":"Colonization Resistance in the Infant Gut: The Role of <i>B. infantis</i> in Reducing pH and Preventing Pathogen Growth.","authors":"Rebbeca M Duar, David Kyle, Giorgio Casaburi","doi":"10.3390/ht9020007","DOIUrl":"https://doi.org/10.3390/ht9020007","url":null,"abstract":"<p><p>Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of <i>Bifidobacterium</i> in the gut microbiome of breasted infants and stool pH, suggesting that this taxon plays a key role in determining the pH in the gut. <i>Bifidobacterium longum</i> subsp. <i>infantis</i> is uniquely equipped to metabolize human milk oligosaccharides (HMO) from breastmilk into acidic end products, mainly lactate and acetate. The presence of these acidic compounds in the infant gut is linked to a lower stool pH. Conversely, infants lacking <i>B. infantis</i> have a significantly higher stool pH, carry a higher abundance of potential pathogens and mucus-eroding bacteria in their gut microbiomes, and have signs of chronic enteric inflammation. This suggests the presence of <i>B. infantis</i> and low intestinal pH may be critical to maintaining a protective environment in the infant gut. Here, we summarize recent studies demonstrating that feeding <i>B. infantis</i> EVC001 to breastfed infants results in significantly lower fecal pH compared to controls and propose that low pH is one critical factor in preventing the invasion and overgrowth of harmful bacteria in the infant gut, a process known as colonization resistance.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9020007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37786404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epigenetics is the interaction between the genome and environmental stimuli capable of influencing gene expression during development and aging. A large number of studies have shown that metabolic diseases are highly associated with epigenetic alterations, suggesting that epigenetic factors may play a central role in obesity. To investigate these relationships, we focus our attention on the most common epigenetic modifications that occur in obesity, including DNA methylation and post-translational modifications of histones. We also consider bariatric surgery as an epigenetic factor, evaluating how the anatomic and physiologic modifications induced by these surgical techniques can change gene expression. Here we discuss the importance of epigenetic mechanisms in chronic disease and cancer, and the role of epigenetic disturbances in obesity, with a focus on the role of bariatric surgery.
{"title":"Factors Influencing Epigenetic Mechanisms: Is There A Role for Bariatric Surgery?","authors":"Alessio Metere, Claire E Graves","doi":"10.3390/ht9010006","DOIUrl":"https://doi.org/10.3390/ht9010006","url":null,"abstract":"<p><p>Epigenetics is the interaction between the genome and environmental stimuli capable of influencing gene expression during development and aging. A large number of studies have shown that metabolic diseases are highly associated with epigenetic alterations, suggesting that epigenetic factors may play a central role in obesity. To investigate these relationships, we focus our attention on the most common epigenetic modifications that occur in obesity, including DNA methylation and post-translational modifications of histones. We also consider bariatric surgery as an epigenetic factor, evaluating how the anatomic and physiologic modifications induced by these surgical techniques can change gene expression. Here we discuss the importance of epigenetic mechanisms in chronic disease and cancer, and the role of epigenetic disturbances in obesity, with a focus on the role of bariatric surgery.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37800272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hovsep Aganyants, Pierre Weigel, Yeranuhi Hovhannisyan, Michèle Lecocq, Haykanush Koloyan, Artur Hambardzumyan, Anichka Hovsepyan, Jean-Noël Hallet, Vehary Sakanyan
D-hydantoinases catalyze an enantioselective opening of 5- and 6-membered cyclic structures and therefore can be used for the production of optically pure precursors for biomedical applications. The thermostable D-hydantoinase from Geobacillusstearothermophilus ATCC 31783 is a manganese-dependent enzyme and exhibits low activity towards bulky hydantoin derivatives. Homology modeling with a known 3D structure (PDB code: 1K1D) allowed us to identify the amino acids to be mutated at the substrate binding site and in its immediate vicinity to modulate the substrate specificity. Both single and double substituted mutants were generated by site-directed mutagenesis at appropriate sites located inside and outside of the stereochemistry gate loops (SGL) involved in the substrate binding. Substrate specificity and kinetic constant data demonstrate that the replacement of Phe159 and Trp287 with alanine leads to an increase in the enzyme activity towards D,L-5-benzyl and D,L-5-indolylmethyl hydantoins. The length of the side chain and the hydrophobicity of substrates are essential parameters to consider when designing the substrate binding pocket for bulky hydantoins. Our data highlight that D-hydantoinase is the authentic dihydropyrimidinase involved in the pyrimidine reductive catabolic pathway in moderate thermophiles.
d -羟化酶催化5元和6元环结构的对映选择性打开,因此可用于生产用于生物医学应用的光学纯前体。来自嗜热硬脂地杆菌ATCC 31783的耐热d -羟乙酸酶是一种依赖锰的酶,对大块羟乙酸衍生物表现出低活性。与已知的3D结构(PDB代码:1K1D)的同源性建模使我们能够确定在底物结合位点及其邻近区域发生突变的氨基酸,以调节底物特异性。在参与底物结合的立体化学门环(SGL)内外的适当位点上,通过定点诱变产生了单取代突变体和双取代突变体。底物特异性和动力学常数数据表明,用丙氨酸取代Phe159和Trp287导致酶对D, l -5-苄基和D, l -5-吲哚基甲基海因酮的活性增加。侧链的长度和底物的疏水性是设计大体积氢化酶底物结合袋时需要考虑的重要参数。我们的数据强调,d -羟化酶是真正的二氢嘧啶酶,参与中度嗜热菌的嘧啶还原分解代谢途径。
{"title":"Rational Engineering of the Substrate Specificity of a Thermostable D-Hydantoinase (Dihydropyrimidinase).","authors":"Hovsep Aganyants, Pierre Weigel, Yeranuhi Hovhannisyan, Michèle Lecocq, Haykanush Koloyan, Artur Hambardzumyan, Anichka Hovsepyan, Jean-Noël Hallet, Vehary Sakanyan","doi":"10.3390/ht9010005","DOIUrl":"https://doi.org/10.3390/ht9010005","url":null,"abstract":"<p><p>D-hydantoinases catalyze an enantioselective opening of 5- and 6-membered cyclic structures and therefore can be used for the production of optically pure precursors for biomedical applications. The thermostable D-hydantoinase from <i>Geobacillus</i> <i>stearothermophilus</i> ATCC 31783 is a manganese-dependent enzyme and exhibits low activity towards bulky hydantoin derivatives. Homology modeling with a known 3D structure (PDB code: 1K1D) allowed us to identify the amino acids to be mutated at the substrate binding site and in its immediate vicinity to modulate the substrate specificity. Both single and double substituted mutants were generated by site-directed mutagenesis at appropriate sites located inside and outside of the stereochemistry gate loops (SGL) involved in the substrate binding. Substrate specificity and kinetic constant data demonstrate that the replacement of Phe159 and Trp287 with alanine leads to an increase in the enzyme activity towards D,L-5-benzyl and D,L-5-indolylmethyl hydantoins. The length of the side chain and the hydrophobicity of substrates are essential parameters to consider when designing the substrate binding pocket for bulky hydantoins. Our data highlight that D-hydantoinase is the authentic dihydropyrimidinase involved in the pyrimidine reductive catabolic pathway in moderate thermophiles.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37645618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Lombardi, Margherita Russo, Amalia Luce, Floriana Morgillo, Virginia Tirino, Gabriella Misso, Erika Martinelli, Teresa Troiani, Vincenzo Desiderio, Gianpaolo Papaccio, Francesco Iovino, Giuseppe Argenziano, Elvira Moscarella, Pasquale Sperlongano, Gennaro Galizia, Raffaele Addeo, Alois Necas, Andrea Necasova, Fortunato Ciardiello, Andrea Ronchi, Michele Caraglia, Anna Grimaldi
Molecular profiling of a tumor allows the opportunity to design specific therapies which are able to interact only with cancer cells characterized by the accumulation of several genomic aberrations. This study investigates the usefulness of next-generation sequencing (NGS) and mutation-specific analysis methods for the detection of target genes for current therapies in non-small-cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), and melanoma patients. We focused our attention on EGFR, BRAF, KRAS, and BRAF genes for NSCLC, melanoma, and mCRC samples, respectively. Our study demonstrated that in about 2% of analyzed cases, the two techniques did not show the same or overlapping results. Two patients affected by mCRC resulted in wild-type (WT) for BRAF and two cases with NSCLC were WT for EGFR according to PGM analysis. In contrast, these samples were mutated for the evaluated genes using the therascreen test on Rotor-Gene Q. In conclusion, our experience suggests that it would be appropriate to confirm the WT status of the genes of interest with a more sensitive analysis method to avoid the presence of a small neoplastic clone and drive the clinician to correct patient monitoring.
{"title":"Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer.","authors":"Angela Lombardi, Margherita Russo, Amalia Luce, Floriana Morgillo, Virginia Tirino, Gabriella Misso, Erika Martinelli, Teresa Troiani, Vincenzo Desiderio, Gianpaolo Papaccio, Francesco Iovino, Giuseppe Argenziano, Elvira Moscarella, Pasquale Sperlongano, Gennaro Galizia, Raffaele Addeo, Alois Necas, Andrea Necasova, Fortunato Ciardiello, Andrea Ronchi, Michele Caraglia, Anna Grimaldi","doi":"10.3390/ht9010004","DOIUrl":"https://doi.org/10.3390/ht9010004","url":null,"abstract":"<p><p>Molecular profiling of a tumor allows the opportunity to design specific therapies which are able to interact only with cancer cells characterized by the accumulation of several genomic aberrations. This study investigates the usefulness of next-generation sequencing (NGS) and mutation-specific analysis methods for the detection of target genes for current therapies in non-small-cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), and melanoma patients. We focused our attention on EGFR, BRAF, KRAS, and BRAF genes for NSCLC, melanoma, and mCRC samples, respectively. Our study demonstrated that in about 2% of analyzed cases, the two techniques did not show the same or overlapping results. Two patients affected by mCRC resulted in wild-type (WT) for BRAF and two cases with NSCLC were WT for EGFR according to PGM analysis. In contrast, these samples were mutated for the evaluated genes using the therascreen test on Rotor-Gene Q. In conclusion, our experience suggests that it would be appropriate to confirm the WT status of the genes of interest with a more sensitive analysis method to avoid the presence of a small neoplastic clone and drive the clinician to correct patient monitoring.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37639959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Novelli, Michela Biancolella, Andrea Latini, Aldo Spallone, Paola Borgiani, Marisa Papaluca
The increase in life expectancy during the 20th century ranks as one of society's greatest achievements, with massive growth in the numbers and proportion of the elderly, virtually occurring in every country of the world. The burden of chronic diseases is one of the main consequences of this phenomenon, severely hampering the quality of life of elderly people and challenging the efficiency and sustainability of healthcare systems. Non-communicable diseases (NCDs) are considered a global emergency responsible for over 70% of deaths worldwide. NCDs are also the basis for complex and multifactorial diseases such as hypertension, diabetes, and obesity. The epidemics of NCDs are a consequence of a complex interaction between health, economic growth, and development. This interaction includes the individual genome, the microbiome, the metabolome, the immune status, and environmental factors such as nutritional and chemical exposure. To counteract NCDs, it is therefore essential to develop an innovative, personalized, preventative, early care model through the integration of different molecular profiles of individuals to identify both the critical biomarkers of NCD susceptibility and to discover novel therapeutic targets.
{"title":"Precision Medicine in Non-Communicable Diseases.","authors":"Giuseppe Novelli, Michela Biancolella, Andrea Latini, Aldo Spallone, Paola Borgiani, Marisa Papaluca","doi":"10.3390/ht9010003","DOIUrl":"https://doi.org/10.3390/ht9010003","url":null,"abstract":"<p><p>The increase in life expectancy during the 20th century ranks as one of society's greatest achievements, with massive growth in the numbers and proportion of the elderly, virtually occurring in every country of the world. The burden of chronic diseases is one of the main consequences of this phenomenon, severely hampering the quality of life of elderly people and challenging the efficiency and sustainability of healthcare systems. Non-communicable diseases (NCDs) are considered a global emergency responsible for over 70% of deaths worldwide. NCDs are also the basis for complex and multifactorial diseases such as hypertension, diabetes, and obesity. The epidemics of NCDs are a consequence of a complex interaction between health, economic growth, and development. This interaction includes the individual genome, the microbiome, the metabolome, the immune status, and environmental factors such as nutritional and chemical exposure. To counteract NCDs, it is therefore essential to develop an innovative, personalized, preventative, early care model through the integration of different molecular profiles of individuals to identify both the critical biomarkers of NCD susceptibility and to discover novel therapeutic targets.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37632641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The editorial team greatly appreciates the reviewers who have dedicated their considerable time and expertise to the journal’s rigorous editorial process over the past 12 months, regardless of whether the papers are finally published or not [...]
{"title":"Acknowledgement to Reviewers of High-Throughput in 2019","authors":"High-Throughput Editorial Office","doi":"10.3390/ht9010002","DOIUrl":"https://doi.org/10.3390/ht9010002","url":null,"abstract":"The editorial team greatly appreciates the reviewers who have dedicated their considerable time and expertise to the journal’s rigorous editorial process over the past 12 months, regardless of whether the papers are finally published or not [...]","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43275773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronica Zelli, Chiara Compagnoni, Katia Cannita, Roberta Capelli, Carlo Capalbo, Mauro Di Vito Nolfi, Edoardo Alesse, Francesca Zazzeroni, Alessandra Tessitore
Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.
{"title":"Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer.","authors":"Veronica Zelli, Chiara Compagnoni, Katia Cannita, Roberta Capelli, Carlo Capalbo, Mauro Di Vito Nolfi, Edoardo Alesse, Francesca Zazzeroni, Alessandra Tessitore","doi":"10.3390/ht9010001","DOIUrl":"https://doi.org/10.3390/ht9010001","url":null,"abstract":"<p><p>Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht9010001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37542238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Steinbacher, Gabriela Alexe, Michael Baune, Ilya Bobrov, Ingmar Bösing, Brigitte Clausen, Tobias Czotscher, Jérémy Epp, Andreas Fischer, Lasse Langstädtler, Daniel Meyer, Sachin Raj Menon, Oltmann Riemer, Heike Sonnenberg, Arne Thomann, Anastasiya Toenjes, Frank Vollertsen, Nicole Wielki, Nils Ellendt
The development of novel structural materials with increasing mechanical requirements is a very resource-intense process if conventional methods are used. While there are high-throughput methods for the development of functional materials, this is not the case for structural materials. Their mechanical properties are determined by their microstructure, so that increased sample volumes are needed. Furthermore, new short-time characterization techniques are required for individual samples which do not necessarily measure the desired material properties, but descriptors which can later be mapped on material properties. While universal micro-hardness testing is being commonly used, it is limited in its capability to measure sample volumes which contain a characteristic microstructure. We propose to use alternative and fast deformation techniques for spherical micro-samples in combination with classical characterization techniques such as XRD, DSC or micro magnetic methods, which deliver descriptors for the microstructural state.
{"title":"Descriptors for High Throughput in Structural Materials Development.","authors":"Matthias Steinbacher, Gabriela Alexe, Michael Baune, Ilya Bobrov, Ingmar Bösing, Brigitte Clausen, Tobias Czotscher, Jérémy Epp, Andreas Fischer, Lasse Langstädtler, Daniel Meyer, Sachin Raj Menon, Oltmann Riemer, Heike Sonnenberg, Arne Thomann, Anastasiya Toenjes, Frank Vollertsen, Nicole Wielki, Nils Ellendt","doi":"10.3390/ht8040022","DOIUrl":"10.3390/ht8040022","url":null,"abstract":"<p><p>The development of novel structural materials with increasing mechanical requirements is a very resource-intense process if conventional methods are used. While there are high-throughput methods for the development of functional materials, this is not the case for structural materials. Their mechanical properties are determined by their microstructure, so that increased sample volumes are needed. Furthermore, new short-time characterization techniques are required for individual samples which do not necessarily measure the desired material properties, but descriptors which can later be mapped on material properties. While universal micro-hardness testing is being commonly used, it is limited in its capability to measure sample volumes which contain a characteristic microstructure. We propose to use alternative and fast deformation techniques for spherical micro-samples in combination with classical characterization techniques such as XRD, DSC or micro magnetic methods, which deliver descriptors for the microstructural state.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43568567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared to traditional laboratory methods, spectroscopic techniques (e.g., near infrared, hyperspectral imaging) provide analysts with an innovative and improved understanding of complex issues by determining several chemical compounds and metabolites at once, allowing for the collection of the sample “fingerprint”. These techniques have the potential to deliver high-throughput options for the analysis of the chemical composition of grapes in the laboratory, the vineyard and before or during harvest, to provide better insights of the chemistry, nutrition and physiology of grapes. Faster computers, the development of software and portable easy to use spectrophotometers and data analytical methods allow for the development of innovative applications of these techniques for the analyses of grape composition.
{"title":"From the Laboratory to The Vineyard—Evolution of The Measurement of Grape Composition using NIR Spectroscopy towards High-Throughput Analysis","authors":"A. Power, V. K. Truong, J. Chapman, D. Cozzolino","doi":"10.3390/ht8040021","DOIUrl":"https://doi.org/10.3390/ht8040021","url":null,"abstract":"Compared to traditional laboratory methods, spectroscopic techniques (e.g., near infrared, hyperspectral imaging) provide analysts with an innovative and improved understanding of complex issues by determining several chemical compounds and metabolites at once, allowing for the collection of the sample “fingerprint”. These techniques have the potential to deliver high-throughput options for the analysis of the chemical composition of grapes in the laboratory, the vineyard and before or during harvest, to provide better insights of the chemistry, nutrition and physiology of grapes. Faster computers, the development of software and portable easy to use spectrophotometers and data analytical methods allow for the development of innovative applications of these techniques for the analyses of grape composition.","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht8040021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43581916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Caicedo-Montoya, Laura Pinilla, León F. Toro, Jeferyd Yepes-García, Rigoberto Ríos-Estepa
The performance of software tools for de novo transcriptome assembly greatly depends on the selection of software parameters. Up to now, the development of de novo transcriptome assembly for prokaryotes has not been as remarkable as that for eukaryotes. In this contribution, Rockhopper2 was used to perform a comparative transcriptome analysis of Streptomyces clavuligerus exposed to diverse environmental conditions. The study focused on assessing the incidence of software parameters on software performance for the identification of differentially expressed genes as a final goal. For this, a statistical optimization was performed using the Transrate Assembly Score (TAS). TAS was also used for evaluating the software performance and for comparing it with related tools, e.g., Trinity. Transcriptome redundancy and completeness were also considered for this analysis. Rockhopper2 and Trinity reached a TAS value of 0.55092 and 0.58337, respectively. Trinity assembles transcriptomes with high redundancy, with 55.6% of transcripts having some duplicates. Additionally, we observed that the total number of differentially expressed genes (DEG) and their annotation greatly depends on the method used for removing redundancy and the tools used for transcript quantification. To our knowledge, this is the first work aimed at assessing de novo assembly software for prokaryotic organisms.
{"title":"Comparative Analysis of Strategies for De Novo Transcriptome Assembly in Prokaryotes: Streptomyces clavuligerus as a Case Study","authors":"Carlos Caicedo-Montoya, Laura Pinilla, León F. Toro, Jeferyd Yepes-García, Rigoberto Ríos-Estepa","doi":"10.3390/ht8040020","DOIUrl":"https://doi.org/10.3390/ht8040020","url":null,"abstract":"The performance of software tools for de novo transcriptome assembly greatly depends on the selection of software parameters. Up to now, the development of de novo transcriptome assembly for prokaryotes has not been as remarkable as that for eukaryotes. In this contribution, Rockhopper2 was used to perform a comparative transcriptome analysis of Streptomyces clavuligerus exposed to diverse environmental conditions. The study focused on assessing the incidence of software parameters on software performance for the identification of differentially expressed genes as a final goal. For this, a statistical optimization was performed using the Transrate Assembly Score (TAS). TAS was also used for evaluating the software performance and for comparing it with related tools, e.g., Trinity. Transcriptome redundancy and completeness were also considered for this analysis. Rockhopper2 and Trinity reached a TAS value of 0.55092 and 0.58337, respectively. Trinity assembles transcriptomes with high redundancy, with 55.6% of transcripts having some duplicates. Additionally, we observed that the total number of differentially expressed genes (DEG) and their annotation greatly depends on the method used for removing redundancy and the tools used for transcript quantification. To our knowledge, this is the first work aimed at assessing de novo assembly software for prokaryotic organisms.","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht8040020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47870810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}