Pub Date : 2022-05-12DOI: 10.1080/23080477.2022.2074661
Parvez Ahmad, Nitin Singh
ABSTRACT Electric Vehicle is now a global term, affecting the transportation sector, automobile industry, and electric grid scenario. As Plug-in Electric Vehicles (PEVs) penetration level is escalating, PEVs will create new challenges and opportunities for transportation and the electric grid in the near future. The distributed stored energy of PEVs with high active power controllability turns PEVs into new distributed energy sources (DES) for the grid. With a high penetration level, PEVs can also provide ancillary services to the grid, e.g., primary frequency control (PFC). Although grid support provided by PEVs is limited because of additional operational limitations and various constraints of PEVs and the grid. A new charging model for PEVs has been proposed in this paper to investigate the potential of PEVs for primary frequency control. The proposed model incorporates several PEV characteristics such as charger topology, drive power limitation, and operational modes with proper consideration of PEV’s charging demand profile. Furthermore, a control scheme is proposed to decide the availability of PEVs for ancillary services and compute the participation level of PEVs without affecting the charging demands. In the end, several scenarios have been used to evaluate and show the potential of PEVs for the PFC in the power system. The maximum deviation of frequency is reduced by 17.39% in case 1 of Scenario A, 26.08% in case 2 of Scenario A and 21.73% in both cases of Scenario B with proper consideration of charging demands. Graphical abstract
{"title":"Plug-in Electric Vehicles Participation in Primary Frequency Control Considering Charging Demand","authors":"Parvez Ahmad, Nitin Singh","doi":"10.1080/23080477.2022.2074661","DOIUrl":"https://doi.org/10.1080/23080477.2022.2074661","url":null,"abstract":"ABSTRACT Electric Vehicle is now a global term, affecting the transportation sector, automobile industry, and electric grid scenario. As Plug-in Electric Vehicles (PEVs) penetration level is escalating, PEVs will create new challenges and opportunities for transportation and the electric grid in the near future. The distributed stored energy of PEVs with high active power controllability turns PEVs into new distributed energy sources (DES) for the grid. With a high penetration level, PEVs can also provide ancillary services to the grid, e.g., primary frequency control (PFC). Although grid support provided by PEVs is limited because of additional operational limitations and various constraints of PEVs and the grid. A new charging model for PEVs has been proposed in this paper to investigate the potential of PEVs for primary frequency control. The proposed model incorporates several PEV characteristics such as charger topology, drive power limitation, and operational modes with proper consideration of PEV’s charging demand profile. Furthermore, a control scheme is proposed to decide the availability of PEVs for ancillary services and compute the participation level of PEVs without affecting the charging demands. In the end, several scenarios have been used to evaluate and show the potential of PEVs for the PFC in the power system. The maximum deviation of frequency is reduced by 17.39% in case 1 of Scenario A, 26.08% in case 2 of Scenario A and 21.73% in both cases of Scenario B with proper consideration of charging demands. Graphical abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"204 - 214"},"PeriodicalIF":2.3,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49633978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-24DOI: 10.1080/23080477.2022.2063528
Md Irfan Ahmed, Ramesh Kumar
ABSTRACT Combined heat and power (CHP) systems are gaining popularity due to their capacity to enhance the electrical system’s economics and sustainability. In recent years, energy analysis has received a lot of attention as a means to enhance the efficiency of CHPs. CHP systems are capable of producing both electrical energy and heat with high efficiency. Traditional power generation is now inadequate to meet the world’s ever-increasing electrical consumption. Unfortunately, when power is produced near load centers, CHP has shown to be a viable alternative solution. This paper represents the complete assessment of optimum sizing and placement of CHP through the systematic procedure. It contains the definition of CHP & its types, modeling, and problem formulation with technical and economic benefits of CHP and distributed generation (DG) and optimization algorithms. The study aims to classify systematically and statistically and analyze the recent research methodologies on optimal placement of CHP approaches published from 2010 to 2021. Graphical Abstarct
{"title":"A systematic review on optimal placement of CHP","authors":"Md Irfan Ahmed, Ramesh Kumar","doi":"10.1080/23080477.2022.2063528","DOIUrl":"https://doi.org/10.1080/23080477.2022.2063528","url":null,"abstract":"ABSTRACT Combined heat and power (CHP) systems are gaining popularity due to their capacity to enhance the electrical system’s economics and sustainability. In recent years, energy analysis has received a lot of attention as a means to enhance the efficiency of CHPs. CHP systems are capable of producing both electrical energy and heat with high efficiency. Traditional power generation is now inadequate to meet the world’s ever-increasing electrical consumption. Unfortunately, when power is produced near load centers, CHP has shown to be a viable alternative solution. This paper represents the complete assessment of optimum sizing and placement of CHP through the systematic procedure. It contains the definition of CHP & its types, modeling, and problem formulation with technical and economic benefits of CHP and distributed generation (DG) and optimization algorithms. The study aims to classify systematically and statistically and analyze the recent research methodologies on optimal placement of CHP approaches published from 2010 to 2021. Graphical Abstarct","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"171 - 191"},"PeriodicalIF":2.3,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44035124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.1080/23080477.2022.2066052
Nand Jee Kanu, A. Lal
ABSTRACT The mechanically induced nonlinear statical assessment of the bending response of single-walled carbon nanotubes (CNTs) fibers on nanoclay-particle-reinforced polymer hybrid laminated composite plate is explored under static loading conditions. A numerical approach is used to find the mechanical properties of CNT-reinforced hybrid laminated plates prepared by involving nanoclay particles in the existing CNT-reinforced epoxy composites. The transverse nonlinear central deflection of a hybrid nanocomposite subjected to mechanical loading based on the Halpin–Tsai approach is evaluated. For the fundamental formulation, a secant-function-based shear deformation theory (SFSDT) and von Kármán nonlinearity are implemented. The influence of CNT/nanoclay particles over the nonlinear bending responses of the hybrid laminated plate under various loading circumstances is studied in detail. A Newton–Raphson method based on nonlinear finite element technique is used for the hybrid nanocomposite plate. Furthermore, the impact of different design parameters, such as thicknesses of CNT fibers, different interphases along with aspect ratios, stacking sequences under different boundary conditions, and the types of loads on the nonlinear transverse central deflection of CNT/nanoclay-reinforced polymer hybrid composite plate, has been investigated. The effectiveness of the suggested model has been confirmed by comparing it to deflection reactions found in the literature. Graphical abstract
{"title":"Nonlinear static analysis of CNT/nanoclay particles reinforced polymer matrix composite plate using secant function based shear deformation theory","authors":"Nand Jee Kanu, A. Lal","doi":"10.1080/23080477.2022.2066052","DOIUrl":"https://doi.org/10.1080/23080477.2022.2066052","url":null,"abstract":"ABSTRACT The mechanically induced nonlinear statical assessment of the bending response of single-walled carbon nanotubes (CNTs) fibers on nanoclay-particle-reinforced polymer hybrid laminated composite plate is explored under static loading conditions. A numerical approach is used to find the mechanical properties of CNT-reinforced hybrid laminated plates prepared by involving nanoclay particles in the existing CNT-reinforced epoxy composites. The transverse nonlinear central deflection of a hybrid nanocomposite subjected to mechanical loading based on the Halpin–Tsai approach is evaluated. For the fundamental formulation, a secant-function-based shear deformation theory (SFSDT) and von Kármán nonlinearity are implemented. The influence of CNT/nanoclay particles over the nonlinear bending responses of the hybrid laminated plate under various loading circumstances is studied in detail. A Newton–Raphson method based on nonlinear finite element technique is used for the hybrid nanocomposite plate. Furthermore, the impact of different design parameters, such as thicknesses of CNT fibers, different interphases along with aspect ratios, stacking sequences under different boundary conditions, and the types of loads on the nonlinear transverse central deflection of CNT/nanoclay-reinforced polymer hybrid composite plate, has been investigated. The effectiveness of the suggested model has been confirmed by comparing it to deflection reactions found in the literature. Graphical abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"10 1","pages":"301 - 312"},"PeriodicalIF":2.3,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45632468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-19DOI: 10.1080/23080477.2022.2065593
B. Mahdad
ABSTRACT In this paper a practical power system planning and control strategy based on a new adaptive sine cosine arithmetic optimization algorithm (ASC_AOA) is proposed to enhance the technical performances of radial distribution (RD) systems. The main objective considered in this study is to optimize the location and the size of shunt compensators based STATCOM devices and multi distributed generation to reduce the total power losses, and to maximize the loading margin stability of practical RD systems. As well confirmed in many recent researches, the success of metaheuristic algorithms is related to the interactivity between intensification and diversification stages. In this study, an adaptive process based on sine and cosine functions is incorporated within the standard AOA to guide the search process toward the best solution. The particularity of the proposed variant (ASC_AOA) has been validated on many benchmark functions, and also applied for optimal automation control of multi DGs and shunt compensators based STATCOM Controllers to enhance the performances of various types of RD systems, such as the 33-bus, the 69-bus, and 85-bus. Obtained results are compared to many recent optimization methods. It is confirmed that the proposed variant achieves the best solution in all of the cases studies elaborated. The proposed variant seems to be a competitive technique and an alternative tool for solving various combinatorial planning and control problems of modern RD systems. Graphical abstract
{"title":"Novel Adaptive Sine Cosine Arithmetic Optimization Algorithm For Optimal Automation Control of DG Units and STATCOM Devices","authors":"B. Mahdad","doi":"10.1080/23080477.2022.2065593","DOIUrl":"https://doi.org/10.1080/23080477.2022.2065593","url":null,"abstract":"ABSTRACT In this paper a practical power system planning and control strategy based on a new adaptive sine cosine arithmetic optimization algorithm (ASC_AOA) is proposed to enhance the technical performances of radial distribution (RD) systems. The main objective considered in this study is to optimize the location and the size of shunt compensators based STATCOM devices and multi distributed generation to reduce the total power losses, and to maximize the loading margin stability of practical RD systems. As well confirmed in many recent researches, the success of metaheuristic algorithms is related to the interactivity between intensification and diversification stages. In this study, an adaptive process based on sine and cosine functions is incorporated within the standard AOA to guide the search process toward the best solution. The particularity of the proposed variant (ASC_AOA) has been validated on many benchmark functions, and also applied for optimal automation control of multi DGs and shunt compensators based STATCOM Controllers to enhance the performances of various types of RD systems, such as the 33-bus, the 69-bus, and 85-bus. Obtained results are compared to many recent optimization methods. It is confirmed that the proposed variant achieves the best solution in all of the cases studies elaborated. The proposed variant seems to be a competitive technique and an alternative tool for solving various combinatorial planning and control problems of modern RD systems. Graphical abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"16 - 37"},"PeriodicalIF":2.3,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43313190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-19DOI: 10.1080/23080477.2022.2065594
Biswajit Mandal, P. Bhowmik
ABSTRACT In this paper, the evolutionary computation-based techniques have been introduced for porosity optimization of dye-sensitized solar cell (DSSC) with comparative analysis. The diffusion differential equation-based model of DSSC achieves the goal. The porosity has been considered for optimization as it influences the light absorption and electron diffusion rate. Due to that reason, the cell performance differs at different porosities. This parameter with proper tuning can help to extract the maximum efficiency irrespective of environmental factors. The search and optimization tools, such as artificial bee colony, differential evolution, genetic algorithm, particle swarm optimization, and simulated annealing (SA), is used and applied to the DSSC model for the optimization. The classic optimization algorithms have been compared, and an investigation has been carried out at different thickness values of the titanium dioxide ( ) layer. This study results the realization of the best approach in terms of convergence and computational time, and the consistency of the optimized porosity has been examined at distinct porosity. It is convenient for the practical model improvement of DSSCs with better efficiency. Graphical abstract
{"title":"Application of Soft Computing Techniques for Porosity Optimization of Dye Sensitized Solar Cell","authors":"Biswajit Mandal, P. Bhowmik","doi":"10.1080/23080477.2022.2065594","DOIUrl":"https://doi.org/10.1080/23080477.2022.2065594","url":null,"abstract":"ABSTRACT In this paper, the evolutionary computation-based techniques have been introduced for porosity optimization of dye-sensitized solar cell (DSSC) with comparative analysis. The diffusion differential equation-based model of DSSC achieves the goal. The porosity has been considered for optimization as it influences the light absorption and electron diffusion rate. Due to that reason, the cell performance differs at different porosities. This parameter with proper tuning can help to extract the maximum efficiency irrespective of environmental factors. The search and optimization tools, such as artificial bee colony, differential evolution, genetic algorithm, particle swarm optimization, and simulated annealing (SA), is used and applied to the DSSC model for the optimization. The classic optimization algorithms have been compared, and an investigation has been carried out at different thickness values of the titanium dioxide ( ) layer. This study results the realization of the best approach in terms of convergence and computational time, and the consistency of the optimized porosity has been examined at distinct porosity. It is convenient for the practical model improvement of DSSCs with better efficiency. Graphical abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"241 - 250"},"PeriodicalIF":2.3,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41792150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-24DOI: 10.1080/23080477.2022.2054197
S. Murali, R. Shankar
ABSTRACT This article emphasizes the design and analysis of an optimal intelligent controller for frequency regulation application. The load frequency control (LFC) mechanism is an eminent and essential mechanism to reinstate the system frequency and scheduled tie-line power to their nominal values. Employing an appropriate controller enhances the operation of the LFC mechanism. Hence, this article put forward an adoptive control policy-based fuzzy-fractional ordered PI controller parallel with fractional PIDN controller (i.e., Fuzzy (PIλf)+PIλDN) for the LFC mechanism. Besides that, a maiden attempt of using a new opposition-learning-based volleyball premier league (OVPL) algorithm is carried out to obtain optimal control parameters. The proposed optimal intelligent controller is explored for a nonlinear multi-area interconnected power system under deregulated environment. The proposed LFC schemes performance has been compared with several popular strategies for step and random perturb in load. Also, the robustness of the proposed scheme has been verified for a wide range of system parameter variations. On the other hand, the modified HVDC tie-line model and the impact of the inertia emulation technique (IET) using converter capacitors on transient behavior are illustrated in this article. Finally, the efficacy of the proposed LFC scheme has been verified over published literature on its platform.
{"title":"Assessment of Amelioration in Frequency Regulation by deploying Novel Intelligent based Controller with Modified HVDC Tie-Line in Deregulated Environment","authors":"S. Murali, R. Shankar","doi":"10.1080/23080477.2022.2054197","DOIUrl":"https://doi.org/10.1080/23080477.2022.2054197","url":null,"abstract":"ABSTRACT This article emphasizes the design and analysis of an optimal intelligent controller for frequency regulation application. The load frequency control (LFC) mechanism is an eminent and essential mechanism to reinstate the system frequency and scheduled tie-line power to their nominal values. Employing an appropriate controller enhances the operation of the LFC mechanism. Hence, this article put forward an adoptive control policy-based fuzzy-fractional ordered PI controller parallel with fractional PIDN controller (i.e., Fuzzy (PIλf)+PIλDN) for the LFC mechanism. Besides that, a maiden attempt of using a new opposition-learning-based volleyball premier league (OVPL) algorithm is carried out to obtain optimal control parameters. The proposed optimal intelligent controller is explored for a nonlinear multi-area interconnected power system under deregulated environment. The proposed LFC schemes performance has been compared with several popular strategies for step and random perturb in load. Also, the robustness of the proposed scheme has been verified for a wide range of system parameter variations. On the other hand, the modified HVDC tie-line model and the impact of the inertia emulation technique (IET) using converter capacitors on transient behavior are illustrated in this article. Finally, the efficacy of the proposed LFC scheme has been verified over published literature on its platform.","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"154 - 170"},"PeriodicalIF":2.3,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42945765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-21DOI: 10.1080/23080477.2022.2054199
Ch. Naga Sai Kalyan, B. S. Goud, Ch. Rami Reddy, M. Bajaj, G. Rao
ABSTRACT This paper attempted to assess the supremacy of designed higher-order degree of freedom (DOF) proportional(P)-integral(I)-derivative(D) (PID) (3DOF-PID) controller making use of a new meta-heuristic optimization approach of water cycle algorithm (WCA) in the study of load frequency control. For this, two test system models of dual area hydro-thermal system system and multiarea multisource systems are believed for investigative purposes. The investigation is performed by imparting the area-1 of test system models with a disturbance of 10% step load (10%SLP). Parameters of 3DOF-PID are rendered optimally over the index of integral square error. Efficacy of the presented 3DOF-PID regulator fine-tuned with WCA is demonstrated with other control schemes that have been implemented on the same test systems. Moreover, superconducting magnetic energy storage and Thyristor controlled series compensator territorial schema is implemented for the MSMA system for performance enhancement. Finally, the robustness of the presented approach is demonstrated through sensitivity analysis. Graphical abstract
{"title":"SMES and TCSC Coordinated Strategy for Multi-area Multi-source System with Water Cycle Algorithm Based 3DOF-PID Controller","authors":"Ch. Naga Sai Kalyan, B. S. Goud, Ch. Rami Reddy, M. Bajaj, G. Rao","doi":"10.1080/23080477.2022.2054199","DOIUrl":"https://doi.org/10.1080/23080477.2022.2054199","url":null,"abstract":"ABSTRACT This paper attempted to assess the supremacy of designed higher-order degree of freedom (DOF) proportional(P)-integral(I)-derivative(D) (PID) (3DOF-PID) controller making use of a new meta-heuristic optimization approach of water cycle algorithm (WCA) in the study of load frequency control. For this, two test system models of dual area hydro-thermal system system and multiarea multisource systems are believed for investigative purposes. The investigation is performed by imparting the area-1 of test system models with a disturbance of 10% step load (10%SLP). Parameters of 3DOF-PID are rendered optimally over the index of integral square error. Efficacy of the presented 3DOF-PID regulator fine-tuned with WCA is demonstrated with other control schemes that have been implemented on the same test systems. Moreover, superconducting magnetic energy storage and Thyristor controlled series compensator territorial schema is implemented for the MSMA system for performance enhancement. Finally, the robustness of the presented approach is demonstrated through sensitivity analysis. Graphical abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"1 - 15"},"PeriodicalIF":2.3,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46499252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-07DOI: 10.1080/23080477.2022.2045787
Lokesh Garg, Sheetla Prasad
ABSTRACT This paper addresses the controller design potentials, challenges, and scope of improvements, which are used to control various VSC-MTDC grids effectively even in presence of renewable energy resources. Advantages of VSC-MTDC systems are high-speed power reversal capability, asynchronous interconnection, no need of reactive power compensation, more economical and flexible, etc. Hence, the different developed control schemes are discussed and summarized in terms of scalability of VSC-MTDC grid topologies. Based on different VSC-MTDC topologies, several controllers such as conventional PI controllers, optimal controllers, robust controllers, and intelligent controllers design potentials with their limitations has been discussed in this study. In order to minimize greenhouse effect, the renewable energy plants, i.e wind farms, solar plants, tidal energy plants, etc. are also integrated to VSC-MTDC grids. Due to uncertainties in renewable energy plants, it is necessary to use robust and intelligent control strategy for the optimal power sharing among terminals and also to maintain the stability of the system. Hence, scope of improvements, design potentials, challenges, integration of renewable energy resources, and limitations based on VSC-MTDC model topologies has been discussed.
{"title":"A Review on Controller Scalability for VSC-MTDC Grids: Challenges and Applications","authors":"Lokesh Garg, Sheetla Prasad","doi":"10.1080/23080477.2022.2045787","DOIUrl":"https://doi.org/10.1080/23080477.2022.2045787","url":null,"abstract":"ABSTRACT This paper addresses the controller design potentials, challenges, and scope of improvements, which are used to control various VSC-MTDC grids effectively even in presence of renewable energy resources. Advantages of VSC-MTDC systems are high-speed power reversal capability, asynchronous interconnection, no need of reactive power compensation, more economical and flexible, etc. Hence, the different developed control schemes are discussed and summarized in terms of scalability of VSC-MTDC grid topologies. Based on different VSC-MTDC topologies, several controllers such as conventional PI controllers, optimal controllers, robust controllers, and intelligent controllers design potentials with their limitations has been discussed in this study. In order to minimize greenhouse effect, the renewable energy plants, i.e wind farms, solar plants, tidal energy plants, etc. are also integrated to VSC-MTDC grids. Due to uncertainties in renewable energy plants, it is necessary to use robust and intelligent control strategy for the optimal power sharing among terminals and also to maintain the stability of the system. Hence, scope of improvements, design potentials, challenges, integration of renewable energy resources, and limitations based on VSC-MTDC model topologies has been discussed.","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"102 - 119"},"PeriodicalIF":2.3,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45666522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-07DOI: 10.1080/23080477.2022.2046943
D. K. Singh, S. Sarangi, A. K. Singh, S. Mohanty
ABSTRACT Simultaneous coordination of dual-setting directional overcurrent relays (DOCRs) and distance relays (DRs) is capable of providing reliable protection in a meshed distribution network (MDN). However, survey of literature on coordination of DRs and dual-setting DOCRs, reveals changes in system topology, especially in the presence of distributed generations (DGs), affects the coordination. As penetrations of DGs are increasing with time and in few years in a row, MDN with 100% penetration is also possible, an improved coordination of dual-setting DOCRs & DRs is targeted in this work. With nonstandard characteristic of DOCR, an innovative objective function is proposed and explored for optimum settings with particle swarm optimization (PSO) and gray wolf optimization (GWO). With various simulation studies, the performance of the proposed approach is investigated with and without compensation using a dynamic voltage restorer (DVR). The proposed method is validated on modified 14-bus and 39-bus test systems. The simulation results depict that the proposed approach can solve the miscoordination problem and the number of relays, operating time, and coordination time interval (CTI) of relays are also minimized. Comparison with convention approach demonstrates the benefits of proposed approach.
{"title":"Coordination of Dual-Setting Overcurrent and Distance Relays for Meshed Distribution Networks with Distributed Generations and Dynamic Voltage Restorer","authors":"D. K. Singh, S. Sarangi, A. K. Singh, S. Mohanty","doi":"10.1080/23080477.2022.2046943","DOIUrl":"https://doi.org/10.1080/23080477.2022.2046943","url":null,"abstract":"ABSTRACT Simultaneous coordination of dual-setting directional overcurrent relays (DOCRs) and distance relays (DRs) is capable of providing reliable protection in a meshed distribution network (MDN). However, survey of literature on coordination of DRs and dual-setting DOCRs, reveals changes in system topology, especially in the presence of distributed generations (DGs), affects the coordination. As penetrations of DGs are increasing with time and in few years in a row, MDN with 100% penetration is also possible, an improved coordination of dual-setting DOCRs & DRs is targeted in this work. With nonstandard characteristic of DOCR, an innovative objective function is proposed and explored for optimum settings with particle swarm optimization (PSO) and gray wolf optimization (GWO). With various simulation studies, the performance of the proposed approach is investigated with and without compensation using a dynamic voltage restorer (DVR). The proposed method is validated on modified 14-bus and 39-bus test systems. The simulation results depict that the proposed approach can solve the miscoordination problem and the number of relays, operating time, and coordination time interval (CTI) of relays are also minimized. Comparison with convention approach demonstrates the benefits of proposed approach.","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"135 - 153"},"PeriodicalIF":2.3,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47468331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-03DOI: 10.1080/23080477.2022.2046942
Lalit Tak, A. Yadav, N. Singh, M. Majeed, V. Mahajan
ABSTRACT With the transformation from a traditional, rural, and agrarian society to a secular, urban, and industrial society and competitive environment, the rise in the power demand and supply makes it difficult to meet the customer’s expectations and needs. It has become necessary that the electric utility industry make sure they have accurate information about system performance and reliability. The paper presents four different cases through which the reliability of the electric distribution system is studied by calculating customer-oriented indices and load-oriented indices. The assessment is carried out using Modified Reliability Assessment Method (MRAM) on IEEE 24 bus system using MATLAB simulation, and the indicators of reliability analysis such as System Average Interruption Frequency Index (SIAFI), System Average Interruption Duration Index (SAIDI), Customer Average Interruption Duration Index (CAIDI), Average Service Availability Index (ASAI), Average Service Unavailability Index (ASUI), Energy Not Supplied index (ENS), Average Energy Not Supplied (AENS), Annual Customer Interruptions (ACI), and Customer Interruption Duration (CID) are evaluated. Moreover, the impact of the inclusion of cyber networks in the traditional system is also taken into consideration to determine the system’s reliability. Also, the result shows that the parallel combination is more superior to the other one. Graphical Abstract
{"title":"Modified Reliability Assessment Method for Analysis of Cyber-Physical System Consisting IEEE 24 Bus System Parallel with Cyber Network","authors":"Lalit Tak, A. Yadav, N. Singh, M. Majeed, V. Mahajan","doi":"10.1080/23080477.2022.2046942","DOIUrl":"https://doi.org/10.1080/23080477.2022.2046942","url":null,"abstract":"ABSTRACT With the transformation from a traditional, rural, and agrarian society to a secular, urban, and industrial society and competitive environment, the rise in the power demand and supply makes it difficult to meet the customer’s expectations and needs. It has become necessary that the electric utility industry make sure they have accurate information about system performance and reliability. The paper presents four different cases through which the reliability of the electric distribution system is studied by calculating customer-oriented indices and load-oriented indices. The assessment is carried out using Modified Reliability Assessment Method (MRAM) on IEEE 24 bus system using MATLAB simulation, and the indicators of reliability analysis such as System Average Interruption Frequency Index (SIAFI), System Average Interruption Duration Index (SAIDI), Customer Average Interruption Duration Index (CAIDI), Average Service Availability Index (ASAI), Average Service Unavailability Index (ASUI), Energy Not Supplied index (ENS), Average Energy Not Supplied (AENS), Annual Customer Interruptions (ACI), and Customer Interruption Duration (CID) are evaluated. Moreover, the impact of the inclusion of cyber networks in the traditional system is also taken into consideration to determine the system’s reliability. Also, the result shows that the parallel combination is more superior to the other one. Graphical Abstract","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"11 1","pages":"120 - 134"},"PeriodicalIF":2.3,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47257322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}