Shu Cai, Jing Guo, Haiyun Shu, Liuxiang Yang, Pengyu Wang, Yazhou Zhou, Jinyu Zhao, Jinyu Han, Qi Wu, Wenge Yang, T. Xiang, H. Mao, Liling Sun
A material described as lutetium–hydrogen–nitrogen (Lu-H-N in short) was recently claimed to have “near-ambient superconductivity” [Dasenbrock-Gammon et al., Nature 615, 244–250 (2023)]. If this result could be reproduced by other teams, it would be a major scientific breakthrough. Here, we report our results of transport and structure measurements on a material prepared using the same method as reported by Dasenbrock-Gammon et al. Our x-ray diffraction measurements indicate that the obtained sample contains three substances: the face-centered-cubic (FCC)-1 phase (Fm-3m) with lattice parameter a = 5.03 Å, the FCC-2 phase (Fm-3m) with a lattice parameter a = 4.755 Å, and Lu metal. The two FCC phases are identical to the those reported in the so-called near-ambient superconductor. However, we find from our resistance measurements in the temperature range from 300 K down to 4 K and the pressure range 0.9–3.4 GPa and our magnetic susceptibility measurements in the pressure range 0.8–3.3 GPa and the temperature range down to 100 K that the samples show no evidence of superconductivity. We also use a laser heating technique to heat a sample to 1800 °C and find no superconductivity in the produced dark blue material below 6.5 GPa. In addition, both samples remain dark blue in color in the pressure range investigated.
{"title":"No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture","authors":"Shu Cai, Jing Guo, Haiyun Shu, Liuxiang Yang, Pengyu Wang, Yazhou Zhou, Jinyu Zhao, Jinyu Han, Qi Wu, Wenge Yang, T. Xiang, H. Mao, Liling Sun","doi":"10.1063/5.0153447","DOIUrl":"https://doi.org/10.1063/5.0153447","url":null,"abstract":"A material described as lutetium–hydrogen–nitrogen (Lu-H-N in short) was recently claimed to have “near-ambient superconductivity” [Dasenbrock-Gammon et al., Nature 615, 244–250 (2023)]. If this result could be reproduced by other teams, it would be a major scientific breakthrough. Here, we report our results of transport and structure measurements on a material prepared using the same method as reported by Dasenbrock-Gammon et al. Our x-ray diffraction measurements indicate that the obtained sample contains three substances: the face-centered-cubic (FCC)-1 phase (Fm-3m) with lattice parameter a = 5.03 Å, the FCC-2 phase (Fm-3m) with a lattice parameter a = 4.755 Å, and Lu metal. The two FCC phases are identical to the those reported in the so-called near-ambient superconductor. However, we find from our resistance measurements in the temperature range from 300 K down to 4 K and the pressure range 0.9–3.4 GPa and our magnetic susceptibility measurements in the pressure range 0.8–3.3 GPa and the temperature range down to 100 K that the samples show no evidence of superconductivity. We also use a laser heating technique to heat a sample to 1800 °C and find no superconductivity in the produced dark blue material below 6.5 GPa. In addition, both samples remain dark blue in color in the pressure range investigated.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"37 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87450296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.
{"title":"Hybrid PIC–fluid simulations for fast electron transport in a silicon target","authors":"","doi":"10.1063/5.0137973","DOIUrl":"https://doi.org/10.1063/5.0137973","url":null,"abstract":"Ultra-intense laser-driven fast electron beam propagation in a silicon target is studied by three-dimensional hybrid particle-in-cell–fluid simulations. It is found that the transverse spatial profile of the fast electron beam has a significant influence on the propagation of the fast electrons. In the case of a steep spatial profile (e.g., a super-Gaussian profile), a tight fast electron beam is produced, and this excites more intense resistive magnetic fields, which pinch the electron beam strongly, leading to strong filamentation of the beam. By contrast, as the gradient of the spatial profile becomes more gentle (e.g., in the case of a Lorentzian profile), the resistive magnetic field and filamentation become weaker. This indicates that fast electron propagation in a solid target can be controlled by modulating the spatial gradient of the laser pulse edge.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"172 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79464555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Perevalov, A. Pukhov, M. Starodubtsev, A. Soloviev
A method for measuring the intensity of focused high-power laser pulses based on numerical simulation of high-harmonic generation in the laser peeler regime is proposed. The dependence of the efficiency of high-harmonic generation on the laser pulse intensity and the spatial parameters during interaction with solid targets is studied numerically. The simulation clearly shows that the amplitude of the generated harmonics depends on the laser pulse parameters. The proposed method is simpler than similar intensity measurement techniques and does not require complex preparation.
{"title":"Laser peeler regime of high-harmonic generation for diagnostics of high-power focused laser pulses","authors":"S. Perevalov, A. Pukhov, M. Starodubtsev, A. Soloviev","doi":"10.1063/5.0142051","DOIUrl":"https://doi.org/10.1063/5.0142051","url":null,"abstract":"A method for measuring the intensity of focused high-power laser pulses based on numerical simulation of high-harmonic generation in the laser peeler regime is proposed. The dependence of the efficiency of high-harmonic generation on the laser pulse intensity and the spatial parameters during interaction with solid targets is studied numerically. The simulation clearly shows that the amplitude of the generated harmonics depends on the laser pulse parameters. The proposed method is simpler than similar intensity measurement techniques and does not require complex preparation.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"41 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78999425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Z. Wu, Y. Shou, Z. B. Guo, H. G. Lu, J. Liu, Di Wu, Z. Gong, X. Yan
The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability. Apart from laser and target configurations, we find that electron heating and surface rippling, effects inherent to the interaction process, have an important role in instability evolution and growth. By employing a simple analytical model and two-dimensional particle-in-cell simulations, we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes, but it has little influence on the growth of large-scale modes, which thus become dominant. With the growth of surface ripples, a mechanism that can significantly influence the growth of these large-scale modes is found. The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force, directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth. Our results show that when surface deformation becomes obvious, electron surface oscillation at 2 ω0 (where ω0 is the laser frequency) is excited simultaneously, which can be seen as a signature of this mechanism.
{"title":"Effects of electron heating and surface rippling on Rayleigh–Taylor instability in radiation pressure acceleration","authors":"X. Z. Wu, Y. Shou, Z. B. Guo, H. G. Lu, J. Liu, Di Wu, Z. Gong, X. Yan","doi":"10.1063/5.0130513","DOIUrl":"https://doi.org/10.1063/5.0130513","url":null,"abstract":"The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability. Apart from laser and target configurations, we find that electron heating and surface rippling, effects inherent to the interaction process, have an important role in instability evolution and growth. By employing a simple analytical model and two-dimensional particle-in-cell simulations, we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes, but it has little influence on the growth of large-scale modes, which thus become dominant. With the growth of surface ripples, a mechanism that can significantly influence the growth of these large-scale modes is found. The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force, directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth. Our results show that when surface deformation becomes obvious, electron surface oscillation at 2 ω0 (where ω0 is the laser frequency) is excited simultaneously, which can be seen as a signature of this mechanism.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"13 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85128742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ham, J. Ryu, Hakmin Lee, Sungbin Park, Y. Ghim, Y. Hwang, K. Chung
We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data. A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of ∼1 keV in the energy range of 1–10 keV. The synthetic spectra of Cu plasmas with different electron temperatures, electron densities, and fast electron fractions are calculated using the FLYCHK code. For quantitative comparison with the measured spectrum, two x-ray power ratios with three different spectral ranges are calculated. We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of ∼0.2 kA/ns. Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams, with characteristics similar to those observed in other X-pinches. The second and third bursts are both generated by long-lived electron beams formed after the neck structure has been completely depleted. In the second burst, the formation of the electron beam is accompanied by an increase in the electron density of the background plasma. Therefore, the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch. Moreover, they emit many hard x-rays (HXRs), enabling the SNU X-pinch to be used as an HXR source. This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.
{"title":"Estimation of plasma parameters of X-pinch with time-resolved x-ray spectroscopy","authors":"S. Ham, J. Ryu, Hakmin Lee, Sungbin Park, Y. Ghim, Y. Hwang, K. Chung","doi":"10.1063/5.0131369","DOIUrl":"https://doi.org/10.1063/5.0131369","url":null,"abstract":"We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data. A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of ∼1 keV in the energy range of 1–10 keV. The synthetic spectra of Cu plasmas with different electron temperatures, electron densities, and fast electron fractions are calculated using the FLYCHK code. For quantitative comparison with the measured spectrum, two x-ray power ratios with three different spectral ranges are calculated. We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of ∼0.2 kA/ns. Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams, with characteristics similar to those observed in other X-pinches. The second and third bursts are both generated by long-lived electron beams formed after the neck structure has been completely depleted. In the second burst, the formation of the electron beam is accompanied by an increase in the electron density of the background plasma. Therefore, the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch. Moreover, they emit many hard x-rays (HXRs), enabling the SNU X-pinch to be used as an HXR source. This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"70 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85534088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthesis pressure and structural stability are two crucial factors for highly energetic materials, and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions. Here, we systematically explore Ce–N compounds through first-principles calculations, demonstrating that the cerium atom can weaken the strength of the N≡N bond and that a rich variety of cerium polynitrides can be formed under moderate pressure. Significantly, P1̄-CeN6 possesses the lowest synthesis pressure of 32 GPa among layered metal polynitrides owing to the strong ligand effect of cerium. The layered structure of P1̄-CeN6 proposed here consists of novel N14 ring. To clarify the formation mechanism of P1̄-CeN6, the reaction path Ce + 3N2 → trans-CeN6 → P1̄-CeN6 is proposed. In addition, P1̄-CeN6 possesses high hardness (20.73 GPa) and can be quenched to ambient conditions. Charge transfer between cerium atoms and N14 rings plays a crucial role in structural stability. Furthermore, the volumetric energy density (11.20 kJ/cm3) of P1̄-CeN6 is much larger than that of TNT (7.05 kJ/cm3), and its detonation pressure (128.95 GPa) and detonation velocity (13.60 km/s) are respectively about seven times and twice those of TNT, and it is therefore a promising high-energy-density material.
{"title":"Cerium-promoted conversion of dinitrogen into high-energy-density material CeN6 under moderate pressure","authors":"Yuan-ming Wang, Zhihui Li, Shifeng Niu, Wen-cai Yi, Shuang Liu, Zhen Yao, Bingbing Liu","doi":"10.1063/5.0136443","DOIUrl":"https://doi.org/10.1063/5.0136443","url":null,"abstract":"Synthesis pressure and structural stability are two crucial factors for highly energetic materials, and recent investigations have indicated that cerium is an efficient catalyst for N2 reduction reactions. Here, we systematically explore Ce–N compounds through first-principles calculations, demonstrating that the cerium atom can weaken the strength of the N≡N bond and that a rich variety of cerium polynitrides can be formed under moderate pressure. Significantly, P1̄-CeN6 possesses the lowest synthesis pressure of 32 GPa among layered metal polynitrides owing to the strong ligand effect of cerium. The layered structure of P1̄-CeN6 proposed here consists of novel N14 ring. To clarify the formation mechanism of P1̄-CeN6, the reaction path Ce + 3N2 → trans-CeN6 → P1̄-CeN6 is proposed. In addition, P1̄-CeN6 possesses high hardness (20.73 GPa) and can be quenched to ambient conditions. Charge transfer between cerium atoms and N14 rings plays a crucial role in structural stability. Furthermore, the volumetric energy density (11.20 kJ/cm3) of P1̄-CeN6 is much larger than that of TNT (7.05 kJ/cm3), and its detonation pressure (128.95 GPa) and detonation velocity (13.60 km/s) are respectively about seven times and twice those of TNT, and it is therefore a promising high-energy-density material.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"55 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83156645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Huo, D. Duan, Tengyu Ma, Qiwen Jiang, Zihan Zhang, Decheng An, F. Tian, T. Cui
Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3−δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.
{"title":"First-principles study on the conventional superconductivity of N-doped fcc-LuH3","authors":"Z. Huo, D. Duan, Tengyu Ma, Qiwen Jiang, Zihan Zhang, Decheng An, F. Tian, T. Cui","doi":"10.1063/5.0151844","DOIUrl":"https://doi.org/10.1063/5.0151844","url":null,"abstract":"Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3−δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"17 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91261401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shivani Choudhary De Marco, S. Mondal, D. Margarone, S. Kahaly
A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up, depending on the region of operation. Based on numerical simulations conducted over a wide range of experimentally achievable parameter space, reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets. The results show that the plasma thickness, exponential density gradient, and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one, thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime. Next, it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species. Finally, the feasibility is demonstrated for generating monoenergetic proton beams with energy peak at E≈20–40 MeV and a narrow energy spread of ΔE/E≈18%–28.6% confined within a divergence angle of ∼175 mrad at a reasonable laser peak intensity of I0 ≃ 5.4 × 1020 W/cm2.
{"title":"Controlled transition to different proton acceleration regimes: Near-critical-density plasmas driven by circularly polarized few-cycle pulses","authors":"Shivani Choudhary De Marco, S. Mondal, D. Margarone, S. Kahaly","doi":"10.1063/5.0151751","DOIUrl":"https://doi.org/10.1063/5.0151751","url":null,"abstract":"A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up, depending on the region of operation. Based on numerical simulations conducted over a wide range of experimentally achievable parameter space, reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets. The results show that the plasma thickness, exponential density gradient, and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one, thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime. Next, it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species. Finally, the feasibility is demonstrated for generating monoenergetic proton beams with energy peak at E≈20–40 MeV and a narrow energy spread of ΔE/E≈18%–28.6% confined within a divergence angle of ∼175 mrad at a reasonable laser peak intensity of I0 ≃ 5.4 × 1020 W/cm2.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"10 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86534597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.
{"title":"Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve","authors":"Cheng-Jian Xiao, Guang-Wei Meng, Yingkui Zhao","doi":"10.1063/5.0119240","DOIUrl":"https://doi.org/10.1063/5.0119240","url":null,"abstract":"A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"5 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83778369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Fan, Shengtao Lin, K. Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, X. Bao, D. Zhou, Bo Zhang, Kaibo Xiao, H. Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zi-nan Wang
{"title":"Corrigendum to: “Spectrum-tailored random fiber laser towards ICF laser facility” [Matter and Radiation at Extremes 8, 025902 (2023)]","authors":"M. Fan, Shengtao Lin, K. Yao, Yifei Qi, Jiaojiao Zhang, Junwen Zheng, Pan Wang, Longqun Ni, X. Bao, D. Zhou, Bo Zhang, Kaibo Xiao, H. Xia, Rui Zhang, Ping Li, Wanguo Zheng, Zi-nan Wang","doi":"10.1063/5.0145795","DOIUrl":"https://doi.org/10.1063/5.0145795","url":null,"abstract":"","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"62 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83039669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}