Pub Date : 2023-06-01Epub Date: 2023-04-11DOI: 10.1089/crispr.2022.0106
Murat Buyukyoruk, William S Henriques, Blake Wiedenheft
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (cas) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in Communications Biology reported the identification of 12,572 putative CRISPRs in the human genome, which they call "hCRISPR." In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the cas genes characteristic of functional CRISPR systems.
{"title":"Clarifying CRISPR: Why Repeats Identified in the Human Genome Should Not Be Considered CRISPRs.","authors":"Murat Buyukyoruk, William S Henriques, Blake Wiedenheft","doi":"10.1089/crispr.2022.0106","DOIUrl":"10.1089/crispr.2022.0106","url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (<i>cas</i>) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in <i>Communications Biology</i> reported the identification of 12,572 putative CRISPRs in the human genome, which they call \"hCRISPR.\" In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the <i>cas</i> genes characteristic of functional CRISPR systems.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"216-221"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277986/pdf/crispr.2022.0106.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2022.0050.correx
{"title":"Correction to: <i>Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic</i> by Panda et al. <i>The CRISPR Journal</i>, 2023;6(2):176-182; DOI: 10.1089/crispr.2022.0050.","authors":"","doi":"10.1089/crispr.2022.0050.correx","DOIUrl":"https://doi.org/10.1089/crispr.2022.0050.correx","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"302"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398720/pdf/crispr.2022.0050.correx.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9938137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2022.0089
Rebecca C Lamothe, Meghan D Storlie, Diego A Espinosa, Rachel Rudlaff, Patrick Browne, Jason Liu, Andres Rivas, Audra Devoto, Jennifer Oki, Ashcon Khoubyari, Daniela S Aliaga Goltsman, Jyun-Liang Lin, Cristina N Butterfield, Christopher T Brown, Brian C Thomas, Gregory J Cost
Development of medicines using gene editing has been hampered by enzymological and immunological impediments. We described previously the discovery and characterization of improved, novel gene-editing systems from metagenomic data. In this study, we substantially advance this work with three such gene-editing systems, demonstrating their utility for cell therapy development. All three systems are capable of reproducible, high-frequency gene editing in primary immune cells. In human T cells, disruption of the T cell receptor (TCR) alpha-chain was induced in >95% of cells, both paralogs of the TCR beta-chain in >90% of cells, and >90% knockout of β2-microglobulin, TIGIT, FAS, and PDCD1. Simultaneous double knockout of TRAC and TRBC was obtained at a frequency equal to that of the single edits. Gene editing with our systems had minimal effect on T cell viability. Furthermore, we integrate a chimeric antigen receptor (CAR) construct into TRAC (up to ∼60% of T cells), and demonstrate CAR expression and cytotoxicity. We next applied our novel gene-editing tools to natural killer (NK) cells, B cells, hematopoietic stem cells, and induced pluripotent stem cells, generating similarly efficient cell-engineering outcomes including the creation of active CAR-NK cells. Interrogation of our gene-editing systems' specificity reveals a profile comparable with or better than Cas9. Finally, our nucleases lack preexisting humoral and T cell-based immunity, consistent with their sourcing from nonhuman pathogens. In all, we show these new gene-editing systems have the activity, specificity, and translatability necessary for use in cell therapy development.
{"title":"Novel CRISPR-Associated Gene-Editing Systems Discovered in Metagenomic Samples Enable Efficient and Specific Genome Engineering.","authors":"Rebecca C Lamothe, Meghan D Storlie, Diego A Espinosa, Rachel Rudlaff, Patrick Browne, Jason Liu, Andres Rivas, Audra Devoto, Jennifer Oki, Ashcon Khoubyari, Daniela S Aliaga Goltsman, Jyun-Liang Lin, Cristina N Butterfield, Christopher T Brown, Brian C Thomas, Gregory J Cost","doi":"10.1089/crispr.2022.0089","DOIUrl":"https://doi.org/10.1089/crispr.2022.0089","url":null,"abstract":"<p><p>Development of medicines using gene editing has been hampered by enzymological and immunological impediments. We described previously the discovery and characterization of improved, novel gene-editing systems from metagenomic data. In this study, we substantially advance this work with three such gene-editing systems, demonstrating their utility for cell therapy development. All three systems are capable of reproducible, high-frequency gene editing in primary immune cells. In human T cells, disruption of the T cell receptor (TCR) alpha-chain was induced in >95% of cells, both paralogs of the TCR beta-chain in >90% of cells, and >90% knockout of β2-microglobulin, <i>TIGIT</i>, <i>FAS</i>, and <i>PDCD1</i>. Simultaneous double knockout of <i>TRAC</i> and <i>TRBC</i> was obtained at a frequency equal to that of the single edits. Gene editing with our systems had minimal effect on T cell viability. Furthermore, we integrate a chimeric antigen receptor (CAR) construct into <i>TRAC</i> (up to ∼60% of T cells), and demonstrate CAR expression and cytotoxicity. We next applied our novel gene-editing tools to natural killer (NK) cells, B cells, hematopoietic stem cells, and induced pluripotent stem cells, generating similarly efficient cell-engineering outcomes including the creation of active CAR-NK cells. Interrogation of our gene-editing systems' specificity reveals a profile comparable with or better than Cas9. Finally, our nucleases lack preexisting humoral and T cell-based immunity, consistent with their sourcing from nonhuman pathogens. In all, we show these new gene-editing systems have the activity, specificity, and translatability necessary for use in cell therapy development.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"243-260"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9734046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2022.0105
Lisa Tschage, Eric Kowarz, Rolf Marschalek
"RNA-templated/directed DNA repair" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed I-SceI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used in cis for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel "RNA-mediated end joining" pathway.
{"title":"Model System to Analyze RNA-Mediated DNA Repair in Mammalian Cells.","authors":"Lisa Tschage, Eric Kowarz, Rolf Marschalek","doi":"10.1089/crispr.2022.0105","DOIUrl":"https://doi.org/10.1089/crispr.2022.0105","url":null,"abstract":"<p><p>\"RNA-templated/directed DNA repair\" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed <i>I-Sc</i>eI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used <i>in cis</i> for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel \"RNA-mediated end joining\" pathway.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"289-301"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-04-20DOI: 10.1089/crispr.2023.0002
Carlos A Vasquez, Mallory Evanoff, Brodie L Ranzau, Sifeng Gu, Emma Deters, Alexis C Komor
The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula. Furthermore, instruction on this topic presents an opportunity to create partnerships between researchers and educators at the K-12 levels that can strengthen student engagement in science, technology, engineering, and mathematics. To this end, we present a 3-day student-centered learning program to introduce high school students to genome editing technologies through a hands-on base editing experiment in Escherichia coli, accompanied by a relevant background lecture and facilitated ethics discussion. This unique partnership aims to educate students and provides a framework for research institutions to implement genome editing outreach programs at local high schools. We have included all requisite materials, including lecture slides, worksheets, experimental protocols, and suggestions on active learning strategies for others to reproduce our program with their local communities.
{"title":"Curing \"GFP-itis\" in Bacteria with Base Editors: Development of a Genome Editing Science Program Implemented with High School Biology Students.","authors":"Carlos A Vasquez, Mallory Evanoff, Brodie L Ranzau, Sifeng Gu, Emma Deters, Alexis C Komor","doi":"10.1089/crispr.2023.0002","DOIUrl":"10.1089/crispr.2023.0002","url":null,"abstract":"<p><p>The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula. Furthermore, instruction on this topic presents an opportunity to create partnerships between researchers and educators at the K-12 levels that can strengthen student engagement in science, technology, engineering, and mathematics. To this end, we present a 3-day student-centered learning program to introduce high school students to genome editing technologies through a hands-on base editing experiment in <i>Escherichia coli</i>, accompanied by a relevant background lecture and facilitated ethics discussion. This unique partnership aims to educate students and provides a framework for research institutions to implement genome editing outreach programs at local high schools. We have included all requisite materials, including lecture slides, worksheets, experimental protocols, and suggestions on active learning strategies for others to reproduce our program with their local communities.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"186-195"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277996/pdf/crispr.2023.0002.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9671496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/crispr.2023.29160.editorial
Rodolphe Barrangou
{"title":"CRISPR Conventions in a Polarized Era.","authors":"Rodolphe Barrangou","doi":"10.1089/crispr.2023.29160.editorial","DOIUrl":"https://doi.org/10.1089/crispr.2023.29160.editorial","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"183-184"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-05-03DOI: 10.1089/crispr.2023.0005
Despoina Trasanidou, Patrick Barendse, Evgenios Bouzetos, Laura de Haan, Hans Bouwmeester, Raymond H J Staals, Ioannis Mougiakos, John van der Oost
Most genetic engineering applications reported thus far rely on the type II-A CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpyCas9), limiting the genome-targeting scope. In this study, we demonstrate that a small, naturally accurate, and thermostable type II-C Cas9 ortholog from Geobacillus thermodenitrificans (ThermoCas9) with alternative target site preference is active in human cells, and it can be used as an efficient genome editing tool, especially for gene disruption. In addition, we develop a ThermoCas9-mediated base editor, called ThermoBE4, for programmable nicking and subsequent C-to-T conversions in human genomes. ThermoBE4 exhibits a three times larger window of activity compared with the corresponding SpyCas9 base editor (BE4), which may be an advantage for gene mutagenesis applications. Hence, ThermoCas9 provides an alternative platform that expands the targeting scope of both genome and base editing in human cells.
{"title":"Efficient Genome and Base Editing in Human Cells Using ThermoCas9.","authors":"Despoina Trasanidou, Patrick Barendse, Evgenios Bouzetos, Laura de Haan, Hans Bouwmeester, Raymond H J Staals, Ioannis Mougiakos, John van der Oost","doi":"10.1089/crispr.2023.0005","DOIUrl":"10.1089/crispr.2023.0005","url":null,"abstract":"<p><p>Most genetic engineering applications reported thus far rely on the type II-A CRISPR-Cas9 nuclease from <i>Streptococcus pyogenes</i> (SpyCas9), limiting the genome-targeting scope. In this study, we demonstrate that a small, naturally accurate, and thermostable type II-C Cas9 ortholog from <i>Geobacillus thermodenitrificans</i> (ThermoCas9) with alternative target site preference is active in human cells, and it can be used as an efficient genome editing tool, especially for gene disruption. In addition, we develop a ThermoCas9-mediated base editor, called ThermoBE4, for programmable nicking and subsequent C-to-T conversions in human genomes. ThermoBE4 exhibits a three times larger window of activity compared with the corresponding SpyCas9 base editor (BE4), which may be an advantage for gene mutagenesis applications. Hence, ThermoCas9 provides an alternative platform that expands the targeting scope of both genome and base editing in human cells.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 3","pages":"278-288"},"PeriodicalIF":3.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1089/crispr.2022.0050
Arijit Panda, Milovan Suvakov, Jessica Mariani, Kristen L Drucker, Yohan Park, Yeongjun Jang, Thomas M Kollmeyer, Gobinda Sarkar, Taejeong Bae, Jean J Kim, Wan Hee Yoon, Robert B Jenkins, Flora M Vaccarino, Alexej Abyzov
The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.
{"title":"Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic.","authors":"Arijit Panda, Milovan Suvakov, Jessica Mariani, Kristen L Drucker, Yohan Park, Yeongjun Jang, Thomas M Kollmeyer, Gobinda Sarkar, Taejeong Bae, Jean J Kim, Wan Hee Yoon, Robert B Jenkins, Flora M Vaccarino, Alexej Abyzov","doi":"10.1089/crispr.2022.0050","DOIUrl":"10.1089/crispr.2022.0050","url":null,"abstract":"<p><p>The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 2","pages":"176-182"},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123805/pdf/crispr.2022.0050.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9494803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1089/crispr.2023.0003
Rianne Opstelten, Julian J Freen-van Heeren
{"title":"CLASH of the Titans: How CAR-T Cells Can Triumph Over Tumors.","authors":"Rianne Opstelten, Julian J Freen-van Heeren","doi":"10.1089/crispr.2023.0003","DOIUrl":"https://doi.org/10.1089/crispr.2023.0003","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 2","pages":"87-89"},"PeriodicalIF":3.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}