Pub Date : 2024-01-02DOI: 10.1089/crispr.2023.0040
Raffaele M Iannuzzi, Ichcha Manipur, Clare Pacini, Fiona M Behan, Mario R Guarracino, Mathew J Garnett, Aurora Savino, Francesco Iorio
Genome-wide genetic screens using CRISPR-guide RNA libraries are widely performed in mammalian cells to functionally characterize individual genes and for the discovery of new anticancer therapeutic targets. As the effectiveness of such powerful and precise tools for cancer pharmacogenomics is emerging, tools and methods for their quality assessment are becoming increasingly necessary. Here, we provide an R package and a high-quality reference data set for the assessment of novel experimental pipelines through which a single calibration experiment has been executed: a screen of the HT-29 human colorectal cancer cell line with a commercially available genome-wide library of single-guide RNAs. This package and data allow experimental researchers to benchmark their screens and produce a quality-control report, encompassing several quality and validation metrics. The R code used for processing the reference data set, for its quality assessment, as well as to evaluate the quality of a user-provided screen, and to reproduce the figures presented in this article is available at https://github.com/DepMap-Analytics/HT29benchmark. The reference data is publicly available on FigShare.
利用 CRISPR 引导的 RNA 文库在哺乳动物细胞中广泛开展全基因组遗传筛选,以确定单个基因的功能特征和发现新的抗癌治疗靶点。随着这种强大而精确的癌症药物基因组学工具的有效性不断显现,对其质量进行评估的工具和方法也变得越来越必要。在此,我们提供了一个 R 软件包和一个高质量的参考数据集,用于评估新的实验管道,并通过该管道执行了一次校准实验:使用市售的全基因组单导 RNA 文库对 HT-29 人类结直肠癌细胞系进行筛选。实验研究人员可以利用这个软件包和数据对他们的筛选进行基准测试,并生成一份包含多个质量和验证指标的质量控制报告。用于处理参考数据集、进行质量评估、评估用户提供的筛选质量以及复制本文所展示图表的 R 代码可在 https://github.com/DepMap-Analytics/HT29benchmark 网站上获取。参考数据可在 FigShare 上公开获取。
{"title":"Benchmark Software and Data for Evaluating CRISPR-Cas9 Experimental Pipelines Through the Assessment of a Calibration Screen.","authors":"Raffaele M Iannuzzi, Ichcha Manipur, Clare Pacini, Fiona M Behan, Mario R Guarracino, Mathew J Garnett, Aurora Savino, Francesco Iorio","doi":"10.1089/crispr.2023.0040","DOIUrl":"10.1089/crispr.2023.0040","url":null,"abstract":"<p><p>Genome-wide genetic screens using CRISPR-guide RNA libraries are widely performed in mammalian cells to functionally characterize individual genes and for the discovery of new anticancer therapeutic targets. As the effectiveness of such powerful and precise tools for cancer pharmacogenomics is emerging, tools and methods for their quality assessment are becoming increasingly necessary. Here, we provide an R package and a high-quality reference data set for the assessment of novel experimental pipelines through which a single calibration experiment has been executed: a screen of the HT-29 human colorectal cancer cell line with a commercially available genome-wide library of single-guide RNAs. This package and data allow experimental researchers to benchmark their screens and produce a quality-control report, encompassing several quality and validation metrics. The R code used for processing the reference data set, for its quality assessment, as well as to evaluate the quality of a user-provided screen, and to reproduce the figures presented in this article is available at https://github.com/DepMap-Analytics/HT29benchmark. The reference data is publicly available on FigShare.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-02DOI: 10.1089/crispr.2023.0026
Nirav Thakkar, Adela Hejzlarova, Vaclav Brabec, David Dolezel
Target-AID, BE3, and ABE7.10 base editors fused to the catalytically modified Cas9 and xCas9(3.7) were tested for germline editing of the fruit fly Drosophila melanogaster. We developed a guide RNA-expressing construct, white-4gRNA, targeting splice sites in the white gene, an X-chromosome located gene. Using white-4gRNA flies and transgenic lines expressing Target-AID, BE3, and ABE7.10 base editors, we tested the efficiency of stable germline gene editing at three different temperatures. Classical Cas9 generating insertions/deletions by non-homologous end joining served as a reference. Our data indicate that gene editing is most efficient at 28°C, the highest temperature suitable for fruit flies. Finally, we created a new allele of the core circadian clock gene timeless using Target-AID. This base edited mutant allele timSS308-9FL had a disrupted circadian clock with a period of ∼29 h. The white-4gRNA expressing fly can be used to test new generations of base editors for future applications in Drosophila.
{"title":"Germline Editing of <i>Drosophila</i> Using CRISPR-Cas9-Based Cytosine and Adenine Base Editors.","authors":"Nirav Thakkar, Adela Hejzlarova, Vaclav Brabec, David Dolezel","doi":"10.1089/crispr.2023.0026","DOIUrl":"10.1089/crispr.2023.0026","url":null,"abstract":"<p><p>Target-AID, BE3, and ABE7.10 base editors fused to the catalytically modified Cas9 and xCas9(3.7) were tested for germline editing of the fruit fly <i>Drosophila melanogaster</i>. We developed a guide RNA-expressing construct, <i>white-</i>4gRNA, targeting splice sites in the <i>white</i> gene, an X-chromosome located gene. Using <i>white-</i>4gRNA flies and transgenic lines expressing Target-AID, BE3, and ABE7.10 base editors, we tested the efficiency of stable germline gene editing at three different temperatures. Classical Cas9 generating insertions/deletions by non-homologous end joining served as a reference. Our data indicate that gene editing is most efficient at 28°C, the highest temperature suitable for fruit flies. Finally, we created a new allele of the core circadian clock gene <i>timeless</i> using Target-AID. This base edited mutant allele <i>tim</i><sup>SS308-9FL</sup> had a disrupted circadian clock with a period of ∼29 h. The <i>white-</i>4gRNA expressing fly can be used to test new generations of base editors for future applications in <i>Drosophila</i>.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"557-569"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-08DOI: 10.1089/crispr.2023.0021.correx
{"title":"Correction to: <i>Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE): An Experimental and Computational Approach for Analyzing CRISPR-Edited Cells</i> by Zhang et al. <i>The CRISPR Journal</i>, 2023;6(5):462-472; DOI: 10.1089/crispr.2023.0021.","authors":"","doi":"10.1089/crispr.2023.0021.correx","DOIUrl":"10.1089/crispr.2023.0021.correx","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"584"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR-based technologies have rapidly enabled the democratization of genome editing in academic institutions through distribution by Addgene over the past decade. Recently, several distribution milestones have been reached, with a collection of >15,000 plasmids deposited by >1,000 laboratories spanning ∼40 countries now shipped 300,000 times to ∼5,000 organizations traversing ∼100 countries. Yet, both deposits of and requests for CRISPR plasmids continue to rise for this disruptive technology. Distribution patterns revealed robust demand for three distinct classes of CRISPR effectors, namely nucleases (e.g., Cas9 and Cas12), modulators (deactivated CRISPR nucleases fused to transcriptional regulators and epigenome modifiers), and chimeric effectors (Cas proteins fused to enzymes carrying out other activities such as deamination, reverse transcription, transposition, and integration). Yearly deposits over the past decade are requested in near-even proportions, reflecting continuous technological development and requests for novel constructs. Though it is unclear whether the slowing rate of requests is inherent to a pandemic operational lag or a transition from emerging to mature technology, it is noteworthy that the relative proportion of requests from plasmids deposited in the previous year remains stable, suggesting robust development of novel tools concurrent with continued adoption of editing, base editing, prime editing, and more. Predictably, most requested plasmids are designed for mammalian genome manipulation, presumably for medical research and human health pursuits, reflecting investments in therapeutic applications. Concurrently, requests for plant and microbial constructs are on the rise, especially in regions of the world more reliant on local agricultural inputs and focused on food and feed applications, illustrating continued diversification of genome editing applications.
{"title":"The Expanding Dissemination and Distribution Patterns of Diverse CRISPR Plasmids by Addgene.","authors":"Brook Pyhtila, Seth Kasowitz, Rachel Leeson, Rodolphe Barrangou","doi":"10.1089/crispr.2023.0059","DOIUrl":"10.1089/crispr.2023.0059","url":null,"abstract":"<p><p>CRISPR-based technologies have rapidly enabled the democratization of genome editing in academic institutions through distribution by Addgene over the past decade. Recently, several distribution milestones have been reached, with a collection of >15,000 plasmids deposited by >1,000 laboratories spanning ∼40 countries now shipped 300,000 times to ∼5,000 organizations traversing ∼100 countries. Yet, both deposits of and requests for CRISPR plasmids continue to rise for this disruptive technology. Distribution patterns revealed robust demand for three distinct classes of CRISPR effectors, namely nucleases (e.g., Cas9 and Cas12), modulators (deactivated CRISPR nucleases fused to transcriptional regulators and epigenome modifiers), and chimeric effectors (Cas proteins fused to enzymes carrying out other activities such as deamination, reverse transcription, transposition, and integration). Yearly deposits over the past decade are requested in near-even proportions, reflecting continuous technological development and requests for novel constructs. Though it is unclear whether the slowing rate of requests is inherent to a pandemic operational lag or a transition from emerging to mature technology, it is noteworthy that the relative proportion of requests from plasmids deposited in the previous year remains stable, suggesting robust development of novel tools concurrent with continued adoption of editing, base editing, prime editing, and more. Predictably, most requested plasmids are designed for mammalian genome manipulation, presumably for medical research and human health pursuits, reflecting investments in therapeutic applications. Concurrently, requests for plant and microbial constructs are on the rise, especially in regions of the world more reliant on local agricultural inputs and focused on food and feed applications, illustrating continued diversification of genome editing applications.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"493-501"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1089/crispr.2023.0056
Elena Dalla Benetta, Adam J López-Denman, Hsing-Han Li, Reem A Masri, Daniel J Brogan, Michelle Bui, Ting Yang, Ming Li, Michael Dunn, Melissa J Klein, Sarah Jackson, Kyle Catalan, Kim R Blasdell, Priscilla Tng, Igor Antoshechkin, Luke S Alphey, Prasad N Paradkar, Omar S Akbari
Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly Aedes aegypti, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.
{"title":"Engineered Antiviral Sensor Targets Infected Mosquitoes.","authors":"Elena Dalla Benetta, Adam J López-Denman, Hsing-Han Li, Reem A Masri, Daniel J Brogan, Michelle Bui, Ting Yang, Ming Li, Michael Dunn, Melissa J Klein, Sarah Jackson, Kyle Catalan, Kim R Blasdell, Priscilla Tng, Igor Antoshechkin, Luke S Alphey, Prasad N Paradkar, Omar S Akbari","doi":"10.1089/crispr.2023.0056","DOIUrl":"10.1089/crispr.2023.0056","url":null,"abstract":"<p><p>Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly <i>Aedes aegypti</i>, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 6","pages":"543-556"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1089/crispr.2023.0039
Erin R Burnight, Luke A Wiley, Nathaniel K Mullin, Malavika K Adur, Mallory J Lang, Cathryn M Cranston, Chunhua Jiao, Stephen R Russell, Elliot H Sohn, Ian C Han, Jason W Ross, Edwin M Stone, Robert F Mullins, Budd A Tucker
Rhodopsin (RHO) mutations such as Pro23His are the leading cause of dominantly inherited retinitis pigmentosa in North America. As with other dominant retinal dystrophies, these mutations lead to production of a toxic protein product, and treatment will require knockdown of the mutant allele. The purpose of this study was to develop a CRISPR-Cas9-mediated transcriptional repression strategy using catalytically inactive Staphylococcus aureus Cas9 (dCas9) fused to the Krüppel-associated box (KRAB) transcriptional repressor domain. Using a reporter construct carrying green fluorescent protein (GFP) cloned downstream of the RHO promoter fragment (nucleotides -1403 to +73), we demonstrate a ∼74-84% reduction in RHO promoter activity in RHOpCRISPRi-treated versus plasmid-only controls. After subretinal transduction of human retinal explants and transgenic Pro23His mutant pigs, significant knockdown of rhodopsin protein was achieved. Suppression of mutant transgene in vivo was associated with a reduction in endoplasmic reticulum (ER) stress and apoptosis markers and preservation of photoreceptor cell layer thickness.
{"title":"CRISPRi-Mediated Treatment of Dominant Rhodopsin-Associated Retinitis Pigmentosa.","authors":"Erin R Burnight, Luke A Wiley, Nathaniel K Mullin, Malavika K Adur, Mallory J Lang, Cathryn M Cranston, Chunhua Jiao, Stephen R Russell, Elliot H Sohn, Ian C Han, Jason W Ross, Edwin M Stone, Robert F Mullins, Budd A Tucker","doi":"10.1089/crispr.2023.0039","DOIUrl":"10.1089/crispr.2023.0039","url":null,"abstract":"<p><p>Rhodopsin (<i>RHO</i>) mutations such as Pro23His are the leading cause of dominantly inherited retinitis pigmentosa in North America. As with other dominant retinal dystrophies, these mutations lead to production of a toxic protein product, and treatment will require knockdown of the mutant allele. The purpose of this study was to develop a CRISPR-Cas9-mediated transcriptional repression strategy using catalytically inactive <i>Staphylococcus aureus</i> Cas9 (dCas9) fused to the Krüppel-associated box (KRAB) transcriptional repressor domain. Using a reporter construct carrying green fluorescent protein (GFP) cloned downstream of the <i>RHO</i> promoter fragment (nucleotides -1403 to +73), we demonstrate a ∼74-84% reduction in <i>RHO</i> promoter activity in <i>RHOp</i>CRISPRi-treated versus plasmid-only controls. After subretinal transduction of human retinal explants and transgenic Pro23His mutant pigs, significant knockdown of rhodopsin protein was achieved. Suppression of mutant transgene <i>in vivo</i> was associated with a reduction in endoplasmic reticulum (ER) stress and apoptosis markers and preservation of photoreceptor cell layer thickness.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 6","pages":"502-513"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1089/crispr.2023.0048
Zexiang Chen, Suet-Yan Kwan, Aamir Mir, Max Hazeltine, Minwook Shin, Shun-Qing Liang, Io Long Chan, Karen Kelly, Krishna S Ghanta, Nicholas Gaston, Yueying Cao, Jun Xie, Guangping Gao, Wen Xue, Erik J Sontheimer, Jonathan K Watts
CRISPR-based genome-editing technologies, including nuclease editing, base editing, and prime editing, have recently revolutionized the development of therapeutics targeting disease-causing mutations. To advance the assessment and development of genome editing tools, a robust mouse model is valuable, particularly for evaluating in vivo activity and delivery strategies. In this study, we successfully generated a knock-in mouse line carrying the Traffic Light Reporter design known as TLR-multi-Cas variant 1 (TLR-MCV1). We comprehensively validated the functionality of this mouse model for both in vitro and in vivo nuclease and prime editing. The TLR-MCV1 reporter mouse represents a versatile and powerful tool for expediting the development of editing technologies and their therapeutic applications.
{"title":"A Fluorescent Reporter Mouse for <i>In Vivo</i> Assessment of Genome Editing with Diverse Cas Nucleases and Prime Editors.","authors":"Zexiang Chen, Suet-Yan Kwan, Aamir Mir, Max Hazeltine, Minwook Shin, Shun-Qing Liang, Io Long Chan, Karen Kelly, Krishna S Ghanta, Nicholas Gaston, Yueying Cao, Jun Xie, Guangping Gao, Wen Xue, Erik J Sontheimer, Jonathan K Watts","doi":"10.1089/crispr.2023.0048","DOIUrl":"10.1089/crispr.2023.0048","url":null,"abstract":"<p><p>CRISPR-based genome-editing technologies, including nuclease editing, base editing, and prime editing, have recently revolutionized the development of therapeutics targeting disease-causing mutations. To advance the assessment and development of genome editing tools, a robust mouse model is valuable, particularly for evaluating <i>in vivo</i> activity and delivery strategies. In this study, we successfully generated a knock-in mouse line carrying the Traffic Light Reporter design known as TLR-multi-Cas variant 1 (TLR-MCV1). We comprehensively validated the functionality of this mouse model for both <i>in vitro</i> and <i>in vivo</i> nuclease and prime editing. The TLR-MCV1 reporter mouse represents a versatile and powerful tool for expediting the development of editing technologies and their therapeutic applications.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"6 6","pages":"570-582"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-08DOI: 10.1089/crispr.2023.0027.correx
{"title":"Correction to: <i>APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels</i> by Rieffer et al. <i>The CRISPR Journal</i>, 2023;6(5):430-446; DOI: 10.1089/crispr.2023.0027.","authors":"","doi":"10.1089/crispr.2023.0027.correx","DOIUrl":"10.1089/crispr.2023.0027.correx","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"583"},"PeriodicalIF":3.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}