Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033628
R. Jackstadt, M. Hodder, O. Sansom
The WNT pathway is a pleiotropic signaling pathway that controls developmental processes, tissue homeostasis, and cancer. The WNT pathway is commonly mutated in many cancers, leading to widespread research into the role of WNT signaling in carcinogenesis. Understanding which cancers are reliant upon WNT activation and which components of the WNT signaling pathway are mutated is paramount to advancing therapeutic strategies. In addition, building holistic insights into the role of WNT signaling in not only tumor cells but also the tumor microenvironment is a vital area of research and may be a promising therapeutic strategy in multiple immunologically inert cancers. Novel compounds aimed at modulating the WNT signaling pathway using diverse mechanisms are currently under investigation in preclinical/early clinical studies. Here, we review how the WNT pathway is activated in multiple cancers and discuss current strategies to target aberrant WNT signaling.
{"title":"WNT and β-Catenin in Cancer: Genes and Therapy","authors":"R. Jackstadt, M. Hodder, O. Sansom","doi":"10.1146/annurev-cancerbio-030419-033628","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033628","url":null,"abstract":"The WNT pathway is a pleiotropic signaling pathway that controls developmental processes, tissue homeostasis, and cancer. The WNT pathway is commonly mutated in many cancers, leading to widespread research into the role of WNT signaling in carcinogenesis. Understanding which cancers are reliant upon WNT activation and which components of the WNT signaling pathway are mutated is paramount to advancing therapeutic strategies. In addition, building holistic insights into the role of WNT signaling in not only tumor cells but also the tumor microenvironment is a vital area of research and may be a promising therapeutic strategy in multiple immunologically inert cancers. Novel compounds aimed at modulating the WNT signaling pathway using diverse mechanisms are currently under investigation in preclinical/early clinical studies. Here, we review how the WNT pathway is activated in multiple cancers and discuss current strategies to target aberrant WNT signaling.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44306353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033635
Benoit J. Van den Eynde, N. van Baren, J. Baurain
Indoleamine-2,3 dioxygenase 1 (IDO1) contributes to tumor immunosuppression by enzymatically degrading tryptophan, which is required for T cell activity, and producing kynurenine. Small-molecule inhibitors, such as epacadostat, have been developed to block IDO1 activity. In preclinical models, they can restore antitumoral T cell immunity and synergize with immune checkpoint inhibitors or cancer vaccines. Based on encouraging clinical results in early phase trials, a randomized phase III study (ECHO-301/KN-252) was launched in metastatic melanoma to test the benefit of adding epacadostat to the reference pembrolizumab therapy. The result was negative. We briefly review the clinical trials that investigated epacadostat in cancer patients and discuss possible explanations for this negative result. We end by suggesting paths to resume clinical development of compounds targeting the IDO1 pathway, which in our view remains an attractive target for cancer immunotherapy.
{"title":"Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma?","authors":"Benoit J. Van den Eynde, N. van Baren, J. Baurain","doi":"10.1146/annurev-cancerbio-030419-033635","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033635","url":null,"abstract":"Indoleamine-2,3 dioxygenase 1 (IDO1) contributes to tumor immunosuppression by enzymatically degrading tryptophan, which is required for T cell activity, and producing kynurenine. Small-molecule inhibitors, such as epacadostat, have been developed to block IDO1 activity. In preclinical models, they can restore antitumoral T cell immunity and synergize with immune checkpoint inhibitors or cancer vaccines. Based on encouraging clinical results in early phase trials, a randomized phase III study (ECHO-301/KN-252) was launched in metastatic melanoma to test the benefit of adding epacadostat to the reference pembrolizumab therapy. The result was negative. We briefly review the clinical trials that investigated epacadostat in cancer patients and discuss possible explanations for this negative result. We end by suggesting paths to resume clinical development of compounds targeting the IDO1 pathway, which in our view remains an attractive target for cancer immunotherapy.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48756124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033556
S. Parks, W. Mueller‐Klieser, J. Pouysségur
Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.
{"title":"Lactate and Acidity in the Cancer Microenvironment","authors":"S. Parks, W. Mueller‐Klieser, J. Pouysségur","doi":"10.1146/annurev-cancerbio-030419-033556","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033556","url":null,"abstract":"Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45539729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033642
A. Biswas, Swarnali Acharyya
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
{"title":"Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression","authors":"A. Biswas, Swarnali Acharyya","doi":"10.1146/annurev-cancerbio-030419-033642","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033642","url":null,"abstract":"Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47633157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033420
Yichen Xu, D. Ruggero
As a convergent mechanism downstream of most oncogenic signals, control of mRNA translation has emerged as a key driver in establishing and tuning gene expression at specific steps in cancer development. Translation control is the most energetically expensive molecular process in the cell that needs to be modulated upon adaption to limited cellular resources, such as cellular stress. It thereby serves as the Achilles’ heel for cancer cells, particularly in response to changes in the microenvironment as well as to nutrient and metabolic shifts characteristic of cancer cell growth and metastasis. In this review, we discuss emerging discoveries that reveal how cancer cells modulate the translation machinery to adapt to oncogenic stress, the mechanisms that guide mRNA translation specificity in cancer, and how this selective mode of gene regulation provides advantages for cancer progression. We also provide an overview of promising preclinical and clinical efforts aimed at targeting the unique vulnerabilities of cancer cells that rely on the remodeling of mRNA translation for their infinite growth and survival.
{"title":"The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications","authors":"Yichen Xu, D. Ruggero","doi":"10.1146/annurev-cancerbio-030419-033420","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033420","url":null,"abstract":"As a convergent mechanism downstream of most oncogenic signals, control of mRNA translation has emerged as a key driver in establishing and tuning gene expression at specific steps in cancer development. Translation control is the most energetically expensive molecular process in the cell that needs to be modulated upon adaption to limited cellular resources, such as cellular stress. It thereby serves as the Achilles’ heel for cancer cells, particularly in response to changes in the microenvironment as well as to nutrient and metabolic shifts characteristic of cancer cell growth and metastasis. In this review, we discuss emerging discoveries that reveal how cancer cells modulate the translation machinery to adapt to oncogenic stress, the mechanisms that guide mRNA translation specificity in cancer, and how this selective mode of gene regulation provides advantages for cancer progression. We also provide an overview of promising preclinical and clinical efforts aimed at targeting the unique vulnerabilities of cancer cells that rely on the remodeling of mRNA translation for their infinite growth and survival.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49109586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033604
S. Ganesan, J. Mehnert
Immune checkpoint blockade (ICB) has significant clinical activity in diverse cancer classes and can induce durable remissions in even refractory advanced disease. However, only a minority of cancer patients treated with ICB have long-term benefits, and ICB treatment is associated with significant, potentially life-threatening, autoimmune side effects. There is a great need to develop biomarkers of response to guide patient selection to maximize the chance of benefit and prevent unnecessary toxicity, and current biomarkers do not have optimal positive or negative predictive value. A variety of potential biomarkers are currently being developed, including those based on assessment of checkpoint protein expression, evaluation of tumor-intrinsic features including mutation burden and viral infection, evaluation of features of the tumor immune microenvironment including nature of immune cell infiltration, and features of the host such as composition of the gut microbiome. Better understanding of the underlying fundamental mechanisms of immune response and resistance to ICB, along with the use of complementary assays that interrogate distinct features of the tumor, the tumor microenvironment, and host immune system, will allow more precise use of these therapies to optimize patient outcomes.
{"title":"Biomarkers for Response to Immune Checkpoint Blockade","authors":"S. Ganesan, J. Mehnert","doi":"10.1146/annurev-cancerbio-030419-033604","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033604","url":null,"abstract":"Immune checkpoint blockade (ICB) has significant clinical activity in diverse cancer classes and can induce durable remissions in even refractory advanced disease. However, only a minority of cancer patients treated with ICB have long-term benefits, and ICB treatment is associated with significant, potentially life-threatening, autoimmune side effects. There is a great need to develop biomarkers of response to guide patient selection to maximize the chance of benefit and prevent unnecessary toxicity, and current biomarkers do not have optimal positive or negative predictive value. A variety of potential biomarkers are currently being developed, including those based on assessment of checkpoint protein expression, evaluation of tumor-intrinsic features including mutation burden and viral infection, evaluation of features of the tumor immune microenvironment including nature of immune cell infiltration, and features of the host such as composition of the gut microbiome. Better understanding of the underlying fundamental mechanisms of immune response and resistance to ICB, along with the use of complementary assays that interrogate distinct features of the tumor, the tumor microenvironment, and host immune system, will allow more precise use of these therapies to optimize patient outcomes.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43807365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over 170 chemical modifications have been identified in protein-coding and noncoding RNAs and shown to exhibit broad impacts on gene expression. Dysregulation of RNA modifications caused by aberrant expression of or mutations in RNA modifiers aberrantly reprograms the epitranscriptome and skews global gene expression, which in turn leads to tumorigenesis and drug resistance. Here we review current knowledge of the functions and underlying mechanisms of aberrant RNA modifications in human cancers, particularly several common RNA modifications, including N6-methyladenosine (m6A), A-to-I editing, pseudouridine (ψ), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), and N4-acetylcytidine (ac4C), providing insights into therapeutic implications of targeting RNA modifications and the associated machineries for cancer therapy.
{"title":"RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications","authors":"Huilin Huang, Hengyou Weng, Xiaolan Deng, Jianjun Chen","doi":"10.1146/annurev-cancerbio-030419-033357","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033357","url":null,"abstract":"Over 170 chemical modifications have been identified in protein-coding and noncoding RNAs and shown to exhibit broad impacts on gene expression. Dysregulation of RNA modifications caused by aberrant expression of or mutations in RNA modifiers aberrantly reprograms the epitranscriptome and skews global gene expression, which in turn leads to tumorigenesis and drug resistance. Here we review current knowledge of the functions and underlying mechanisms of aberrant RNA modifications in human cancers, particularly several common RNA modifications, including N6-methyladenosine (m6A), A-to-I editing, pseudouridine (ψ), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), and N4-acetylcytidine (ac4C), providing insights into therapeutic implications of targeting RNA modifications and the associated machineries for cancer therapy.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033357","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45438162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033619
Diana Vara-Ciruelos, M. Dandapani, D. Hardie
The AMP-activated protein kinase (AMPK) is activated by energy stress and restores homeostasis by switching on catabolism, while switching off cell growth and proliferation. Findings that AMPK acts downstream of the tumor suppressor LKB1 have suggested that AMPK might also suppress tumorigenesis. In mouse models of B and T cell lymphoma in which genetic loss of AMPK occurred before tumor initiation, tumorigenesis was accelerated, confirming that AMPK has tumor-suppressor functions. However, when loss of AMPK in a T cell lymphoma model occurred after tumor initiation, or simultaneously with tumor initiation in a lung cancer model, the disease was ameliorated. Thus, once tumorigenesis has occurred, AMPK switches from tumor suppression to tumor promotion. Analysis of alterations in AMPK genes in human cancers suggests similar dichotomies, with some genes being frequently amplified while others are mutated. Overall, while AMPK-activating drugs might be effective in preventing cancer, in some cases AMPK inhibitors might be required to treat it.
{"title":"AMP-Activated Protein Kinase: Friend or Foe in Cancer?","authors":"Diana Vara-Ciruelos, M. Dandapani, D. Hardie","doi":"10.1146/annurev-cancerbio-030419-033619","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033619","url":null,"abstract":"The AMP-activated protein kinase (AMPK) is activated by energy stress and restores homeostasis by switching on catabolism, while switching off cell growth and proliferation. Findings that AMPK acts downstream of the tumor suppressor LKB1 have suggested that AMPK might also suppress tumorigenesis. In mouse models of B and T cell lymphoma in which genetic loss of AMPK occurred before tumor initiation, tumorigenesis was accelerated, confirming that AMPK has tumor-suppressor functions. However, when loss of AMPK in a T cell lymphoma model occurred after tumor initiation, or simultaneously with tumor initiation in a lung cancer model, the disease was ameliorated. Thus, once tumorigenesis has occurred, AMPK switches from tumor suppression to tumor promotion. Analysis of alterations in AMPK genes in human cancers suggests similar dichotomies, with some genes being frequently amplified while others are mutated. Overall, while AMPK-activating drugs might be effective in preventing cancer, in some cases AMPK inhibitors might be required to treat it.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":"103 3","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41280664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033533
V. Rebecca, M. Herlyn
Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.
{"title":"Nongenetic Mechanisms of Drug Resistance in Melanoma","authors":"V. Rebecca, M. Herlyn","doi":"10.1146/annurev-cancerbio-030419-033533","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033533","url":null,"abstract":"Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46584390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.1146/annurev-cancerbio-030419-033428
G. Plitas, A. Rudensky
The immune system has evolved complex effector mechanisms to protect the host against a diversity of pathogenic organisms and regulatory adaptations that can curtail pathological sequelae of inflammatory events, prevent autoimmunity, and assist in tissue repair. Cancers, by virtue of their local manifestations of tissue dysfunction and destruction, inflammation, and genomic instability, can evoke these protective mechanisms, which support the progression of tumors and prevent their immune eradication. Central to these processes is a subset of CD4+ T cells, known as regulatory T (Treg) cells, that express the X chromosome–linked transcription factor FOXP3. In addition to their critical role in controlling autoimmunity and suppressing inflammatory responses in diverse biological settings, Treg cells are ubiquitously present in the tumor microenvironment where they promote tumor development and progression by dampening antitumor immune responses. Furthermore, Treg cells can directly support the survival of transformed cells through the elaboration of growth factors and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the biology of tumor-associated Treg cells have opened up opportunities for their selective targeting in cancer, with the goal of alleviating their suppression of antitumor immune responses while maintaining overall immune homeostasis.
{"title":"Regulatory T Cells in Cancer","authors":"G. Plitas, A. Rudensky","doi":"10.1146/annurev-cancerbio-030419-033428","DOIUrl":"https://doi.org/10.1146/annurev-cancerbio-030419-033428","url":null,"abstract":"The immune system has evolved complex effector mechanisms to protect the host against a diversity of pathogenic organisms and regulatory adaptations that can curtail pathological sequelae of inflammatory events, prevent autoimmunity, and assist in tissue repair. Cancers, by virtue of their local manifestations of tissue dysfunction and destruction, inflammation, and genomic instability, can evoke these protective mechanisms, which support the progression of tumors and prevent their immune eradication. Central to these processes is a subset of CD4+ T cells, known as regulatory T (Treg) cells, that express the X chromosome–linked transcription factor FOXP3. In addition to their critical role in controlling autoimmunity and suppressing inflammatory responses in diverse biological settings, Treg cells are ubiquitously present in the tumor microenvironment where they promote tumor development and progression by dampening antitumor immune responses. Furthermore, Treg cells can directly support the survival of transformed cells through the elaboration of growth factors and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the biology of tumor-associated Treg cells have opened up opportunities for their selective targeting in cancer, with the goal of alleviating their suppression of antitumor immune responses while maintaining overall immune homeostasis.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44313839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}