Pub Date : 2024-07-26DOI: 10.1038/s41526-024-00418-z
Laura J Beckett, Philip M Williams, Li Shean Toh, Volker Hessel, Lukas Gerstweiler, Ian Fisk, Luis Toronjo-Urquiza, Veeren M Chauhan
Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.
{"title":"Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism.","authors":"Laura J Beckett, Philip M Williams, Li Shean Toh, Volker Hessel, Lukas Gerstweiler, Ian Fisk, Luis Toronjo-Urquiza, Veeren M Chauhan","doi":"10.1038/s41526-024-00418-z","DOIUrl":"10.1038/s41526-024-00418-z","url":null,"abstract":"<p><p>Spaceflight presents significant challenges to the physiological state of living organisms. This can be due to the microgravity environment experienced during long-term space missions, resulting in alterations in muscle structure and function, such as atrophy. However, a comprehensive understanding of the adaptive mechanisms of biological systems is required to devise potential solutions and therapeutic approaches for adapting to spaceflight conditions. This review examines the current understanding of the challenges posed by spaceflight on physiological changes, alterations in metabolism, dysregulation of pathways and the suitability and advantages of using the model organism Caenorhabditis elegans nematodes to study the effects of spaceflight. Research has shown that changes in the gene and protein composition of nematodes significantly occur across various larval stages and rearing environments, including both microgravity and Earth gravity settings, often mirroring changes observed in astronauts. Additionally, the review explores significant insights into the fundamental metabolic changes associated with muscle atrophy and growth, which could lead to the development of diagnostic biomarkers and innovative techniques to prevent and counteract muscle atrophy. These insights not only advance our understanding of microgravity-induced muscle atrophy but also lay the groundwork for the development of targeted interventions to mitigate its effects in the future.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"79"},"PeriodicalIF":4.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41526-024-00414-3
Thomas E Diaz, Emma C Ives, Diana I Lazare, Daniel M Buckland
Effective medications will be required to maintain human health for long-duration space operations. Previous studies have explored the stability and potency of several of the medications used on the International Space Station (ISS). This study is a comprehensive analysis of the expected terrestrial shelf-lives of the entire 2023 ISS formulary using 4 international registries. Of the 106 medications in the ISS formulary, shelf-life data was found in at least 1 of the registries for 91 (86%) medications. Of these 91 medications, 54 have an estimated terrestrial shelf-life of ≤36 months when stored in their original packaging. 14 will expire in less than 24 months. The results of this study provide operational insight to supplying a pharmacy for an exploration mission, optimize therapeutic outcomes, and prevent diseases associated with extended spaceflight operations. Ultimately, those responsible for the health of spaceflight crews will have to find ways to extend the expiration of medications to the complete mission duration or accept the elevated risk associated with administration of an expired medication.
{"title":"Expiration analysis of the International Space Station formulary for exploration mission planning.","authors":"Thomas E Diaz, Emma C Ives, Diana I Lazare, Daniel M Buckland","doi":"10.1038/s41526-024-00414-3","DOIUrl":"10.1038/s41526-024-00414-3","url":null,"abstract":"<p><p>Effective medications will be required to maintain human health for long-duration space operations. Previous studies have explored the stability and potency of several of the medications used on the International Space Station (ISS). This study is a comprehensive analysis of the expected terrestrial shelf-lives of the entire 2023 ISS formulary using 4 international registries. Of the 106 medications in the ISS formulary, shelf-life data was found in at least 1 of the registries for 91 (86%) medications. Of these 91 medications, 54 have an estimated terrestrial shelf-life of ≤36 months when stored in their original packaging. 14 will expire in less than 24 months. The results of this study provide operational insight to supplying a pharmacy for an exploration mission, optimize therapeutic outcomes, and prevent diseases associated with extended spaceflight operations. Ultimately, those responsible for the health of spaceflight crews will have to find ways to extend the expiration of medications to the complete mission duration or accept the elevated risk associated with administration of an expired medication.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"76"},"PeriodicalIF":4.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1038/s41526-024-00416-1
Jannatun Nawer, Brian Stanford, Matthias Kolbe, Stephan Schneider, Stéphane Gossé, Rainer K Wunderlich, Markus Mohr, Aurelio Borzì, Antonia Neels, Douglas M Matson
Evaporation control is a critical facility resource during solidification experiments that limits processing time and must be tracked to ensure facility health. A thermodynamic analysis was performed on a ternary FeCrNi sample processed onboard the International Space Station (ISS) using ESA Electromagnetic Levitation (EML) facility in a microgravity environment. A non-ideal solution-based mathematical model was applied for the overall sample mass loss prediction during this study. The overall sample mass loss prediction is consistent with the post-flight mass loss measurements. The species-specific findings from this study were validated using post-mission SEM-EDX surface evaluations by three different facilities. The bulk composition prediction was validated using SEM-EDX and wet chemical analysis. The non-ideal solution model was then applied to predict the composition of the dust generated during EML testing. The thicknesses of the deposited layer on the EML coil at various locations were also calculated using the geometry of the facility and results were validated with near-real-time dust layer predictions from toxicity tracking software developed by the German Space Center (DLR) Microgravity User Support Center (MUSC).
{"title":"Thermodynamic assessment of evaporation during molten steel testing onboard the International Space Station.","authors":"Jannatun Nawer, Brian Stanford, Matthias Kolbe, Stephan Schneider, Stéphane Gossé, Rainer K Wunderlich, Markus Mohr, Aurelio Borzì, Antonia Neels, Douglas M Matson","doi":"10.1038/s41526-024-00416-1","DOIUrl":"10.1038/s41526-024-00416-1","url":null,"abstract":"<p><p>Evaporation control is a critical facility resource during solidification experiments that limits processing time and must be tracked to ensure facility health. A thermodynamic analysis was performed on a ternary FeCrNi sample processed onboard the International Space Station (ISS) using ESA Electromagnetic Levitation (EML) facility in a microgravity environment. A non-ideal solution-based mathematical model was applied for the overall sample mass loss prediction during this study. The overall sample mass loss prediction is consistent with the post-flight mass loss measurements. The species-specific findings from this study were validated using post-mission SEM-EDX surface evaluations by three different facilities. The bulk composition prediction was validated using SEM-EDX and wet chemical analysis. The non-ideal solution model was then applied to predict the composition of the dust generated during EML testing. The thicknesses of the deposited layer on the EML coil at various locations were also calculated using the geometry of the facility and results were validated with near-real-time dust layer predictions from toxicity tracking software developed by the German Space Center (DLR) Microgravity User Support Center (MUSC).</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"77"},"PeriodicalIF":4.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1038/s41526-024-00419-y
Jessica L Braun, Val A Fajardo
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
{"title":"Spaceflight increases sarcoplasmic reticulum Ca<sup>2+</sup> leak and this cannot be counteracted with BuOE treatment.","authors":"Jessica L Braun, Val A Fajardo","doi":"10.1038/s41526-024-00419-y","DOIUrl":"10.1038/s41526-024-00419-y","url":null,"abstract":"<p><p>Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca<sup>2+</sup> dysregulation. The sarco(endo)plasmic reticulum Ca<sup>2+</sup> ATPase (SERCA) pump is responsible for bringing Ca<sup>2+</sup> from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca<sup>2+</sup> uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP<sup>5+</sup> (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca<sup>2+</sup> leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca<sup>2+</sup> leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca<sup>2+</sup> leak.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"78"},"PeriodicalIF":4.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1038/s41526-024-00415-2
Kevin A Lidberg, Kendan Jones-Isaac, Jade Yang, Jacelyn Bain, Lu Wang, James W MacDonald, Theo K Bammler, Justina Calamia, Kenneth E Thummel, Catherine K Yeung, Stefanie Countryman, Paul Koenig, Jonathan Himmelfarb, Edward J Kelly
The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.
国际空间站(ISS)上的微重力环境提供了一种独特的应激源,有助于了解在宇航员身上观察到的病理变化的潜在细胞和分子驱动因素,其最终目标是制定策略以实现长期太空飞行和更好地治疗地球上的疾病。我们利用这种独特的环境来评估微重力对肾近曲小管上皮细胞(PTEC)对血清暴露和维生素 D 生物转化能力的影响。为了测试微重力是否会改变近端肾小管对血清暴露的病理反应,我们用人血清处理了在微生理系统(PT-MPS)中培养的PTEC,测量了毒性和炎症的生物标志物(KIM-1和IL-6),并通过RNAseq对正在飞行(微重力)的细胞和各自的对照组(地面)进行了全局转录组学研究。鉴于在微重力状态下观察到的严重骨质流失和 PTECs 产生维生素 D 的活性形式,我们用 25(OH)D3(维生素 D)处理三维培养的 PTECs 并监测维生素 D 代谢物的形成,通过 RNAseq 进行了全局转录组学研究,并评估了飞行(微重力)中的 PTECs 和各自的地面对照组中 CYP27B1、CYP24A1 或 CYP3A5 的转录表达。我们证明,微重力既没有改变 PTEC 对维生素 D 的代谢,也没有诱导 PTEC 对人类血清的独特反应,这表明肾近曲小管中的这些基本生化途径不会因短期暴露于微重力环境而发生显著改变。鉴于长期太空飞行的前景,需要进行更多的研究,以确定这些反应是否与长期(>6 个月)暴露于微重力环境一致。
{"title":"Modeling cellular responses to serum and vitamin D in microgravity using a human kidney microphysiological system.","authors":"Kevin A Lidberg, Kendan Jones-Isaac, Jade Yang, Jacelyn Bain, Lu Wang, James W MacDonald, Theo K Bammler, Justina Calamia, Kenneth E Thummel, Catherine K Yeung, Stefanie Countryman, Paul Koenig, Jonathan Himmelfarb, Edward J Kelly","doi":"10.1038/s41526-024-00415-2","DOIUrl":"10.1038/s41526-024-00415-2","url":null,"abstract":"<p><p>The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D<sub>3</sub> (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"75"},"PeriodicalIF":4.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1038/s41526-024-00408-1
A Rouillard, P Escot Bocanegra, A Stancampiano, S Dozias, J Lemaire, J M Pouvesle, E Robert, F Brulé-Morabito, M Demasure, S Rouquette
Cold atmospheric pressure plasma (ionized gas) is an innovative medical tool for the treatment of infected wounds thanks to its potential to inactivate drug-resistant microorganisms and promote tissue regeneration and vascularization. The low power consumption, compactness, and versatility of Cold Atmospheric Pressure Plasma (CAPP) devices make them an ideal tool for risk mitigation associated with human spaceflights. This work presents results in microgravity on the operability of CAPP and its antimicrobial effect. The experiments carried out in parabolic flights make it possible to optimize the treatment conditions (i.e., the distance, the gas mixture) and to obtain the rapid inactivation (<15 s) of Escherichia coli samples. Interestingly, the inactivation efficiency of CAPP was higher during parabolic flights than under terrestrial conditions. Overall, these results encourage the further development of CAPP medical devices for its implementation during human spaceflights.
{"title":"Demonstration for cold atmospheric pressure plasma jet operation and antibacterial action in microgravity.","authors":"A Rouillard, P Escot Bocanegra, A Stancampiano, S Dozias, J Lemaire, J M Pouvesle, E Robert, F Brulé-Morabito, M Demasure, S Rouquette","doi":"10.1038/s41526-024-00408-1","DOIUrl":"10.1038/s41526-024-00408-1","url":null,"abstract":"<p><p>Cold atmospheric pressure plasma (ionized gas) is an innovative medical tool for the treatment of infected wounds thanks to its potential to inactivate drug-resistant microorganisms and promote tissue regeneration and vascularization. The low power consumption, compactness, and versatility of Cold Atmospheric Pressure Plasma (CAPP) devices make them an ideal tool for risk mitigation associated with human spaceflights. This work presents results in microgravity on the operability of CAPP and its antimicrobial effect. The experiments carried out in parabolic flights make it possible to optimize the treatment conditions (i.e., the distance, the gas mixture) and to obtain the rapid inactivation (<15 s) of Escherichia coli samples. Interestingly, the inactivation efficiency of CAPP was higher during parabolic flights than under terrestrial conditions. Overall, these results encourage the further development of CAPP medical devices for its implementation during human spaceflights.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"74"},"PeriodicalIF":4.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1038/s41526-024-00410-7
Ashley R Wilkinson, Frances Brewer, Hannah Wright, Ben Whiteside, Amari Williams, Lynn Harper, Anne M Wilson
This meta-analysis of 160 semiconductor crystals that were grown in microgravity on orbital vehicles between 1973 and 2016 is based on publicly available information documented in the literature. This analysis provides comparisons of crystal metrics including size, structure quality, uniformity, and improved performance between crystals grown in microgravity or terrestrially. Improvement in at least one of these metrics was observed for 86% of those materials that included data in their studies.
{"title":"A meta-analysis of semiconductor materials fabricated in microgravity.","authors":"Ashley R Wilkinson, Frances Brewer, Hannah Wright, Ben Whiteside, Amari Williams, Lynn Harper, Anne M Wilson","doi":"10.1038/s41526-024-00410-7","DOIUrl":"10.1038/s41526-024-00410-7","url":null,"abstract":"<p><p>This meta-analysis of 160 semiconductor crystals that were grown in microgravity on orbital vehicles between 1973 and 2016 is based on publicly available information documented in the literature. This analysis provides comparisons of crystal metrics including size, structure quality, uniformity, and improved performance between crystals grown in microgravity or terrestrially. Improvement in at least one of these metrics was observed for 86% of those materials that included data in their studies.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"73"},"PeriodicalIF":4.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1038/s41526-024-00412-5
Michael C Wong, Jonathan P Bennett, Lambert T Leong, Yong E Liu, Nisa N Kelly, John Cherry, Kate Kloza, Bosco Li, Sandra Iuliano, Jean Sibonga, Aenor Sawyer, Jeff Ayton, John A Shepherd
Individuals in isolated and extreme environments can experience debilitating side-effects including significant decreases in fat-free mass (FFM) from disuse and inadequate nutrition. The objective of this study was to determine the strengths and weaknesses of three-dimensional optical (3DO) imaging for monitoring body composition in either simulated or actual remote environments. Thirty healthy adults (ASTRO, male = 15) and twenty-two Antarctic Expeditioners (ABCS, male = 18) were assessed for body composition. ASTRO participants completed duplicate 3DO scans while standing and inverted by gravity boots plus a single dual-energy X-ray absorptiometry (DXA) scan. The inverted scans were an analog for fluid redistribution from gravity changes. An existing body composition model was used to estimate fat mass (FM) and FFM from 3DO meshes. 3DO body composition estimates were compared to DXA with linear regression and reported with the coefficient of determination (R2) and root mean square error (RMSE). ABCS participants received only duplicate 3DO scans on a monthly basis. Standing ASTRO meshes achieved an R2 of 0.76 and 0.97 with an RMSE of 2.62 and 2.04 kg for FM and FFM, while inverted meshes achieved an R2 of 0.52 and 0.93 with an RMSE of 2.84 and 3.23 kg for FM and FFM, respectively, compared to DXA. For the ABCS arm, mean weight, FM, and FFM changes were -0.47, 0.06, and -0.54 kg, respectively. Simulated fluid redistribution decreased the accuracy of estimated body composition values from 3DO scans. However, FFM stayed robust. 3DO imaging showed good absolute accuracy for body composition assessment in isolated and remote environments.
{"title":"Evaluation of body shape as a human body composition assessment in isolated conditions and remote environments.","authors":"Michael C Wong, Jonathan P Bennett, Lambert T Leong, Yong E Liu, Nisa N Kelly, John Cherry, Kate Kloza, Bosco Li, Sandra Iuliano, Jean Sibonga, Aenor Sawyer, Jeff Ayton, John A Shepherd","doi":"10.1038/s41526-024-00412-5","DOIUrl":"10.1038/s41526-024-00412-5","url":null,"abstract":"<p><p>Individuals in isolated and extreme environments can experience debilitating side-effects including significant decreases in fat-free mass (FFM) from disuse and inadequate nutrition. The objective of this study was to determine the strengths and weaknesses of three-dimensional optical (3DO) imaging for monitoring body composition in either simulated or actual remote environments. Thirty healthy adults (ASTRO, male = 15) and twenty-two Antarctic Expeditioners (ABCS, male = 18) were assessed for body composition. ASTRO participants completed duplicate 3DO scans while standing and inverted by gravity boots plus a single dual-energy X-ray absorptiometry (DXA) scan. The inverted scans were an analog for fluid redistribution from gravity changes. An existing body composition model was used to estimate fat mass (FM) and FFM from 3DO meshes. 3DO body composition estimates were compared to DXA with linear regression and reported with the coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE). ABCS participants received only duplicate 3DO scans on a monthly basis. Standing ASTRO meshes achieved an R<sup>2</sup> of 0.76 and 0.97 with an RMSE of 2.62 and 2.04 kg for FM and FFM, while inverted meshes achieved an R<sup>2</sup> of 0.52 and 0.93 with an RMSE of 2.84 and 3.23 kg for FM and FFM, respectively, compared to DXA. For the ABCS arm, mean weight, FM, and FFM changes were -0.47, 0.06, and -0.54 kg, respectively. Simulated fluid redistribution decreased the accuracy of estimated body composition values from 3DO scans. However, FFM stayed robust. 3DO imaging showed good absolute accuracy for body composition assessment in isolated and remote environments.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"72"},"PeriodicalIF":4.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1038/s41526-024-00409-0
Cyril Mani, Tanya S Paul, Patrick M Archambault, Alexandre Marois
Deep-space missions require preventative care methods based on predictive models for identifying in-space pathologies. Deploying such models requires flexible edge computing, which Open Neural Network Exchange (ONNX) formats enable by optimizing inference directly on wearable edge devices. This work demonstrates an innovative approach to point-of-care machine learning model pipelines by combining this capacity with an advanced self-optimizing training scheme to classify periods of Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFIB), and Atrial Flutter (AFL). 742 h of electrocardiogram (ECG) recordings were pre-processed into 30-second normalized samples where variable mode decomposition purged muscle artifacts and instrumentation noise. Seventeen heart rate variability and morphological ECG features were extracted by convoluting peak detection with Gaussian distributions and delineating QRS complexes using discrete wavelet transforms. The decision tree classifier's features, parameters, and hyperparameters were self-optimized through stratified triple nested cross-validation ranked on F1-scoring against cardiologist labeling. The selected model achieved a macro F1-score of 0.899 with 0.993 for NSR, 0.938 for AFIB, and 0.767 for AFL. The most important features included median P-wave amplitudes, PRR20, and mean heart rates. The ONNX-translated pipeline took 9.2 s/sample. This combination of our self-optimizing scheme and deployment use case of ONNX demonstrated overall accurate operational tachycardia detection.
深空任务需要基于预测模型的预防性护理方法,以识别空间病症。部署此类模型需要灵活的边缘计算,而开放神经网络交换(ONNX)格式可通过直接在可穿戴边缘设备上优化推理来实现。这项工作通过将这种能力与先进的自我优化训练方案相结合,对正常窦性心律(NSR)、心房颤动(AFIB)和心房扑动(AFL)期进行分类,展示了一种创新的护理点机器学习模型管道方法。742 小时的心电图(ECG)记录被预处理成 30 秒的归一化样本,其中可变模式分解清除了肌肉伪影和仪器噪音。通过高斯分布卷积峰值检测和离散小波变换划分 QRS 波群,提取了 17 个心率变异性和形态心电图特征。决策树分类器的特征、参数和超参数通过分层三重嵌套交叉验证进行了自我优化,根据心脏病专家的标记进行 F1 评分排名。所选模型的宏观 F1 得分为 0.899,其中 NSR 为 0.993,AFIB 为 0.938,AFL 为 0.767。最重要的特征包括 P 波振幅中值、PRR20 和平均心率。ONNX翻译管道耗时9.2秒/样本。我们的自我优化方案与 ONNX 部署使用案例相结合,证明了操作性心动过速检测的整体准确性。
{"title":"Machine learning workflow for edge computed arrhythmia detection in exploration class missions.","authors":"Cyril Mani, Tanya S Paul, Patrick M Archambault, Alexandre Marois","doi":"10.1038/s41526-024-00409-0","DOIUrl":"10.1038/s41526-024-00409-0","url":null,"abstract":"<p><p>Deep-space missions require preventative care methods based on predictive models for identifying in-space pathologies. Deploying such models requires flexible edge computing, which Open Neural Network Exchange (ONNX) formats enable by optimizing inference directly on wearable edge devices. This work demonstrates an innovative approach to point-of-care machine learning model pipelines by combining this capacity with an advanced self-optimizing training scheme to classify periods of Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFIB), and Atrial Flutter (AFL). 742 h of electrocardiogram (ECG) recordings were pre-processed into 30-second normalized samples where variable mode decomposition purged muscle artifacts and instrumentation noise. Seventeen heart rate variability and morphological ECG features were extracted by convoluting peak detection with Gaussian distributions and delineating QRS complexes using discrete wavelet transforms. The decision tree classifier's features, parameters, and hyperparameters were self-optimized through stratified triple nested cross-validation ranked on F1-scoring against cardiologist labeling. The selected model achieved a macro F1-score of 0.899 with 0.993 for NSR, 0.938 for AFIB, and 0.767 for AFL. The most important features included median P-wave amplitudes, PRR20, and mean heart rates. The ONNX-translated pipeline took 9.2 s/sample. This combination of our self-optimizing scheme and deployment use case of ONNX demonstrated overall accurate operational tachycardia detection.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"71"},"PeriodicalIF":4.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1038/s41526-024-00413-4
Anna Yu Kikina, Mariia S Matrosova, Elena Yu Gorbacheva, Ksenia K Gogichaeva, Konstantin A Toniyan, Valery V Boyarintsev, Oleg V Kotov, Irina V Ogneva
The participation of women in space programs of increasing flight duration requires research of their reproductive system from the perspective of subsequent childbearing and healthy aging. For the first time, we present hormonal and structural data on the dynamics of recovery after a 157-day space flight in a woman of reproductive age. There were no clinically significant changes in the reproductive system, but detailed analysis shows that weightlessness leads to an increase in the proportion of early antral follicles and granulosa cells in large antral follicles. Returning to Earth's gravity reduces the number and diameter of early antral follicles.
{"title":"Weightlessness leads to an increase granulosa cells in the growing follicle.","authors":"Anna Yu Kikina, Mariia S Matrosova, Elena Yu Gorbacheva, Ksenia K Gogichaeva, Konstantin A Toniyan, Valery V Boyarintsev, Oleg V Kotov, Irina V Ogneva","doi":"10.1038/s41526-024-00413-4","DOIUrl":"10.1038/s41526-024-00413-4","url":null,"abstract":"<p><p>The participation of women in space programs of increasing flight duration requires research of their reproductive system from the perspective of subsequent childbearing and healthy aging. For the first time, we present hormonal and structural data on the dynamics of recovery after a 157-day space flight in a woman of reproductive age. There were no clinically significant changes in the reproductive system, but detailed analysis shows that weightlessness leads to an increase in the proportion of early antral follicles and granulosa cells in large antral follicles. Returning to Earth's gravity reduces the number and diameter of early antral follicles.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"70"},"PeriodicalIF":4.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}