Pub Date : 2024-12-19DOI: 10.1038/s41526-024-00449-6
Yuwei Hu, Yuanxi Lin, Lu Cheng, Yang Xu, Jian Zhang, Zheng Zheng, Huan Wang, Min Yan, Hui Chen
Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts. However, its pathogenesis is not fully understood. New findings indicate the impaired outflow of the optic nerve cerebrospinal fluid may participate or contribute to some changes in SANS. In this perspective, we generated a hypothesis that the outflow of cerebrospinal fluid through the optic nerve sheath may be impaired under micro-gravity and then may potentially lead to SANS-related alterations.
{"title":"Hypothesis on the outflow of optic nerve cerebrospinal fluid in spaceflight associated neuro ocular syndrome.","authors":"Yuwei Hu, Yuanxi Lin, Lu Cheng, Yang Xu, Jian Zhang, Zheng Zheng, Huan Wang, Min Yan, Hui Chen","doi":"10.1038/s41526-024-00449-6","DOIUrl":"10.1038/s41526-024-00449-6","url":null,"abstract":"<p><p>Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts. However, its pathogenesis is not fully understood. New findings indicate the impaired outflow of the optic nerve cerebrospinal fluid may participate or contribute to some changes in SANS. In this perspective, we generated a hypothesis that the outflow of cerebrospinal fluid through the optic nerve sheath may be impaired under micro-gravity and then may potentially lead to SANS-related alterations.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"112"},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colloidal solids (COLIS) is a state-of-the-art light scattering setup developed for experiments onboard the International Space Station (ISS). COLIS allows for probing the structure and dynamics of soft matter systems on a wide range of length scales, from a few nm to tens of microns, and on time scales from 100 ns to tens of hours. In addition to conventional static and dynamic light scattering, COLIS includes depolarized dynamic light scattering, a small-angle camera, photon correlation imaging, and optical manipulation of thermosensitive samples through an auxiliary near-infrared laser beam, thereby providing a unique platform for probing soft matter systems. We demonstrate COLIS through ground tests on standard Brownian suspensions, and on protein, colloidal glasses, and gel systems similar to those to be used in future ISS experiments.
{"title":"An advanced light scattering apparatus for investigating soft matter onboard the International Space Station.","authors":"Alessandro Martinelli, Stefano Buzzaccaro, Quentin Galand, Juliette Behra, Niel Segers, Erik Leussink, Yadvender Singh Dhillon, Dominique Maes, James Lutsko, Roberto Piazza, Luca Cipelletti","doi":"10.1038/s41526-024-00455-8","DOIUrl":"10.1038/s41526-024-00455-8","url":null,"abstract":"<p><p>Colloidal solids (COLIS) is a state-of-the-art light scattering setup developed for experiments onboard the International Space Station (ISS). COLIS allows for probing the structure and dynamics of soft matter systems on a wide range of length scales, from a few nm to tens of microns, and on time scales from 100 ns to tens of hours. In addition to conventional static and dynamic light scattering, COLIS includes depolarized dynamic light scattering, a small-angle camera, photon correlation imaging, and optical manipulation of thermosensitive samples through an auxiliary near-infrared laser beam, thereby providing a unique platform for probing soft matter systems. We demonstrate COLIS through ground tests on standard Brownian suspensions, and on protein, colloidal glasses, and gel systems similar to those to be used in future ISS experiments.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"115"},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1038/s41526-024-00448-7
Luise Strauch, Melanie von der Wiesche, Alexandra Noppe, Edwin Mulder, Iris Rieger, Daniel Aeschbach, Eva-Maria Elmenhorst
Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age ± SD, 33 ± 9 years) during two months of 6o head-down tilt (HDT) bed rest, which is a well-established spaceflight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30 and 58) and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc step-down Bonferroni adjustment indicated that compared to BDC-9, arousals were increased, while sleep duration, N3, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during the course of HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to persistent sleep deficits experienced during real space missions.
{"title":"Simulating microgravity with 60 days of 6 degree head-down tilt bed rest compromises sleep.","authors":"Luise Strauch, Melanie von der Wiesche, Alexandra Noppe, Edwin Mulder, Iris Rieger, Daniel Aeschbach, Eva-Maria Elmenhorst","doi":"10.1038/s41526-024-00448-7","DOIUrl":"10.1038/s41526-024-00448-7","url":null,"abstract":"<p><p>Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age ± SD, 33 ± 9 years) during two months of 6<sup>o</sup> head-down tilt (HDT) bed rest, which is a well-established spaceflight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30 and 58) and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc step-down Bonferroni adjustment indicated that compared to BDC-9, arousals were increased, while sleep duration, N3, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during the course of HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to persistent sleep deficits experienced during real space missions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"109"},"PeriodicalIF":4.4,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g., sleep loss, confinement, and high workload, characterize the living experience in space and potentially affect motor performance. However, the evidence of these stressors remains elusive. We recruited twelve taikonauts from the China Space Station to conduct a motor timing task that minimized the effect of microgravity on motor performance. Participants showed a remarkable increase in motor timing variance during spaceflight, compared to their pre- and post-flight performance and that of ground controls. Model-based analysis revealed that their timing deficits were driven by increased central noise instead of impaired motor execution. Our study provides evidence that nonspecific stressors can profoundly affect motor performance during spaceflight.
{"title":"Stressors affect human motor timing during spaceflight.","authors":"Yu Tian, Zhaoran Zhang, Changhua Jiang, Dong Chen, Zhaoxia Liu, Ming Wei, Chunhui Wang, Kunlin Wei","doi":"10.1038/s41526-024-00439-8","DOIUrl":"10.1038/s41526-024-00439-8","url":null,"abstract":"<p><p>Crewed outer-space missions require adequate motor capacity among astronauts, whose sensorimotor system is disturbed by microgravity. Stressors other than microgravity, e.g., sleep loss, confinement, and high workload, characterize the living experience in space and potentially affect motor performance. However, the evidence of these stressors remains elusive. We recruited twelve taikonauts from the China Space Station to conduct a motor timing task that minimized the effect of microgravity on motor performance. Participants showed a remarkable increase in motor timing variance during spaceflight, compared to their pre- and post-flight performance and that of ground controls. Model-based analysis revealed that their timing deficits were driven by increased central noise instead of impaired motor execution. Our study provides evidence that nonspecific stressors can profoundly affect motor performance during spaceflight.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"108"},"PeriodicalIF":4.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1038/s41526-024-00444-x
Omor M Khan, Will Gasperini, Chess Necessary, Zach Jacobs, Sam Perry, Jason Rexroat, Kendall Nelson, Paul Gamble, Twyman Clements, Maximilien DeLeon, Sean Howard, Anamaria Zavala, Mary Farach-Carson, Elizabeth Blaber, Danielle Wu, Aykut Satici, Gunes Uzer
Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.
长期载人航天飞行需要更好地了解微重力对生理的影响。虽然地面微重力模拟将低强度振动(LIV)确定为一种可能的对策,但细胞在实际微重力条件下如何对 LIV 作出反应仍未得到探索。因此,低强度振动生物反应器在太空中的适应性仍然有限,导致微重力研究方面存在巨大差距。在本研究中,我们介绍了专为在国际空间站中使用而设计的 LIV 生物反应器。我们的研究涵盖生物反应器的设计过程,以及在 0.7 g、90 Hz LIV 条件下对包裹在水凝胶 3D 打印支架中的细胞的短期存活率进行评估。符合太空任务操作要求的 LIV 生物反应器为研究真实微重力条件下 LIV 对细胞的影响提供了一个强大的平台。
{"title":"Development and characterization of a low intensity vibrational system for microgravity studies.","authors":"Omor M Khan, Will Gasperini, Chess Necessary, Zach Jacobs, Sam Perry, Jason Rexroat, Kendall Nelson, Paul Gamble, Twyman Clements, Maximilien DeLeon, Sean Howard, Anamaria Zavala, Mary Farach-Carson, Elizabeth Blaber, Danielle Wu, Aykut Satici, Gunes Uzer","doi":"10.1038/s41526-024-00444-x","DOIUrl":"10.1038/s41526-024-00444-x","url":null,"abstract":"<p><p>Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"107"},"PeriodicalIF":4.4,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1038/s41526-024-00446-9
Shannon Marchal, Alexander Choukér, Jürgen Bereiter-Hahn, Armin Kraus, Daniela Grimm, Marcus Krüger
From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.
{"title":"Challenges for the human immune system after leaving Earth.","authors":"Shannon Marchal, Alexander Choukér, Jürgen Bereiter-Hahn, Armin Kraus, Daniela Grimm, Marcus Krüger","doi":"10.1038/s41526-024-00446-9","DOIUrl":"10.1038/s41526-024-00446-9","url":null,"abstract":"<p><p>From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"106"},"PeriodicalIF":4.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1038/s41526-024-00443-y
Tijs Louwies, Patrick De Boever, Robin Hasso, Malcom F Tremblay, Da Xu, Andrew P Blaber, Nandu Goswami
Long-term human spaceflight can lead to cardiovascular deconditioning, but little is known about how weightlessness affects microcirculation. In this study, we examined how the retinal microvessels and cerebrovascular regulation of 19 healthy male participants responded to long-term head-down bedrest (HDBR), an earth-based analog for weightlessness. In addition, we examined whether an anti-inflammatory/antioxidant cocktail could prevent the vascular changes caused by HDBR. In all study participants, we found a decrease in retinal arteriolar diameter by HDBR day 8 and an increase in retinal venular diameter by HDBR day 16. Concurrently, blood pressure at the level of the middle cerebral artery and the cerebrovascular resistance index were higher during HDBR, while cerebral blood flow velocity was lower. None of these changes were reversed in participants receiving the anti-inflammatory/antioxidant cocktail, indicating that this cocktail was insufficient to restore the microvascular and cerebral blood flow changes induced by HDBR.
{"title":"Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail.","authors":"Tijs Louwies, Patrick De Boever, Robin Hasso, Malcom F Tremblay, Da Xu, Andrew P Blaber, Nandu Goswami","doi":"10.1038/s41526-024-00443-y","DOIUrl":"10.1038/s41526-024-00443-y","url":null,"abstract":"<p><p>Long-term human spaceflight can lead to cardiovascular deconditioning, but little is known about how weightlessness affects microcirculation. In this study, we examined how the retinal microvessels and cerebrovascular regulation of 19 healthy male participants responded to long-term head-down bedrest (HDBR), an earth-based analog for weightlessness. In addition, we examined whether an anti-inflammatory/antioxidant cocktail could prevent the vascular changes caused by HDBR. In all study participants, we found a decrease in retinal arteriolar diameter by HDBR day 8 and an increase in retinal venular diameter by HDBR day 16. Concurrently, blood pressure at the level of the middle cerebral artery and the cerebrovascular resistance index were higher during HDBR, while cerebral blood flow velocity was lower. None of these changes were reversed in participants receiving the anti-inflammatory/antioxidant cocktail, indicating that this cocktail was insufficient to restore the microvascular and cerebral blood flow changes induced by HDBR.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"105"},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1038/s41526-024-00445-w
John G Hardy
Microgravity and space radiation are hazards of spaceflight that have deleterious effects on articular cartilage. Since it is not widely monitored or protected through dedicated countermeasures, articular cartilage loss is an unmitigated risk of human spaceflight. Spaceflight-induced cartilage loss will affect an astronaut's performance during a mission and long-term health after a mission. Addressing concerns for cartilage health will be critical to the continued safe and successful exploration of space.
{"title":"Articular cartilage loss is an unmitigated risk of human spaceflight.","authors":"John G Hardy","doi":"10.1038/s41526-024-00445-w","DOIUrl":"10.1038/s41526-024-00445-w","url":null,"abstract":"<p><p>Microgravity and space radiation are hazards of spaceflight that have deleterious effects on articular cartilage. Since it is not widely monitored or protected through dedicated countermeasures, articular cartilage loss is an unmitigated risk of human spaceflight. Spaceflight-induced cartilage loss will affect an astronaut's performance during a mission and long-term health after a mission. Addressing concerns for cartilage health will be critical to the continued safe and successful exploration of space.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"104"},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1038/s41526-024-00447-8
Franca Arndt, Katharina Siems, Sarah V Walker, Noelle C Bryan, Stefan Leuko, Ralf Moeller, Alessa L Boschert
Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.
{"title":"Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity.","authors":"Franca Arndt, Katharina Siems, Sarah V Walker, Noelle C Bryan, Stefan Leuko, Ralf Moeller, Alessa L Boschert","doi":"10.1038/s41526-024-00447-8","DOIUrl":"10.1038/s41526-024-00447-8","url":null,"abstract":"<p><p>Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"103"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s41526-024-00442-z
Daan W A van den Nieuwenhof, Lorenzo Moroni, Joshua Chou, Jochen Hinkelbein
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
{"title":"Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review.","authors":"Daan W A van den Nieuwenhof, Lorenzo Moroni, Joshua Chou, Jochen Hinkelbein","doi":"10.1038/s41526-024-00442-z","DOIUrl":"10.1038/s41526-024-00442-z","url":null,"abstract":"<p><p>The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"102"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}