Pub Date : 2024-10-01Epub Date: 2024-09-26DOI: 10.21037/qims-23-1767
Mahaman Mallam Abdoul Rachid, Jian-Nan Li, Pan Zhe
{"title":"Total regression of a duodenal tubulovillous adenoma after chemotherapy: results of an <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scan.","authors":"Mahaman Mallam Abdoul Rachid, Jian-Nan Li, Pan Zhe","doi":"10.21037/qims-23-1767","DOIUrl":"10.21037/qims-23-1767","url":null,"abstract":"","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: There are different types of vena cava filter (VCF) available in clinical practice. However, limited data exist to determine whether one type is superior to another, and no single VCF is universally recommended in clinical guidelines. The objective of this study was to investigate the safety and efficacy of a novel VCF, Octoparms, for the prevention of pulmonary embolism (PE) and to compare it with the Celect filter.
Methods: This multicenter, randomized, open-label, parallel, positive-controlled, noninferiority trial was conducted in 10 centers across 6 provinces in China from October 2017 to March 2019. Patients who had confirmed lower extremity deep vein thrombosis or PE or who were at risk of PE with a clinical indication for VCF placement due to contraindication to or failure of anticoagulant therapy were included in the trial. The sample size for this trial was based on the assumption that the clinical success rate would be 95% and the noninferiority margin would be 10% for both filters. Each patient underwent baseline testing and was randomized using a web-based central system. Any additional interventions or standard treatments patients received along with the VCF placement were recorded. The primary endpoint was the overall clinical success rate, including technical and clinical success of filter placement and retrieval. The secondary endpoint was the safety of filter placement and retrieval, encompassing procedure-related and filter-related complications.
Results: A total of 188 patients were included and were divided into two groups: the Octoparms group (n=94) and the Celect group (n=94). Baseline characteristics and demographics were comparable between the two groups (P>0.05). Technical and clinical success rates for filter placement were achieved in 100% (188/188) of patients. The median dwelling time was 12.0 days (range, 4-190 days). Ten VCFs were left in situ as permanent devices. Of the remaining 178 patients, technical success and clinical success rates for filter retrieval were both achieved in 100% of cases (178/178). Clinical success rates were 92.6% (87/94) for the Octoparms group and 96.8% (91/94) for the Celect group, with a difference of -4.2% (hazard ratio 2.441, 95% confidence interval 0.612-9.741; P=0.206). The lower limit was greater than the noninferiority margin of -10%. Eight patients experienced a total of eight procedure-related complications. No filter-related complications, such as migration, deformation, inferior vena cava (IVC) penetration, peripheral organ damage, or IVC stenosis/occlusion, were observed (P>0.05).
Conclusions: The Octoparms filter exhibited a high rate of clinical success and a low rate of complications during placement and retrieval, demonstrating noninferiority to the Celect filter.
{"title":"Efficacy and safety of a novel vena cava filter on pulmonary embolism prophylaxis: a prospective, multicenter, randomized, parallel, positive-controlled, noninferiority clinical trial.","authors":"Maofeng Gong, Boxiang Zhao, Jianlong Liu, Gaojun Teng, Caifang Ni, Hao Xu, Zhen Li, Shuiting Zhai, Yanrong Zhang, Hua Xiang, Weizhu Yang, Jianping Gu","doi":"10.21037/qims-24-879","DOIUrl":"10.21037/qims-24-879","url":null,"abstract":"<p><strong>Background: </strong>There are different types of vena cava filter (VCF) available in clinical practice. However, limited data exist to determine whether one type is superior to another, and no single VCF is universally recommended in clinical guidelines. The objective of this study was to investigate the safety and efficacy of a novel VCF, Octoparms, for the prevention of pulmonary embolism (PE) and to compare it with the Celect filter.</p><p><strong>Methods: </strong>This multicenter, randomized, open-label, parallel, positive-controlled, noninferiority trial was conducted in 10 centers across 6 provinces in China from October 2017 to March 2019. Patients who had confirmed lower extremity deep vein thrombosis or PE or who were at risk of PE with a clinical indication for VCF placement due to contraindication to or failure of anticoagulant therapy were included in the trial. The sample size for this trial was based on the assumption that the clinical success rate would be 95% and the noninferiority margin would be 10% for both filters. Each patient underwent baseline testing and was randomized using a web-based central system. Any additional interventions or standard treatments patients received along with the VCF placement were recorded. The primary endpoint was the overall clinical success rate, including technical and clinical success of filter placement and retrieval. The secondary endpoint was the safety of filter placement and retrieval, encompassing procedure-related and filter-related complications.</p><p><strong>Results: </strong>A total of 188 patients were included and were divided into two groups: the Octoparms group (n=94) and the Celect group (n=94). Baseline characteristics and demographics were comparable between the two groups (P>0.05). Technical and clinical success rates for filter placement were achieved in 100% (188/188) of patients. The median dwelling time was 12.0 days (range, 4-190 days). Ten VCFs were left <i>in situ</i> as permanent devices. Of the remaining 178 patients, technical success and clinical success rates for filter retrieval were both achieved in 100% of cases (178/178). Clinical success rates were 92.6% (87/94) for the Octoparms group and 96.8% (91/94) for the Celect group, with a difference of -4.2% (hazard ratio 2.441, 95% confidence interval 0.612-9.741; P=0.206). The lower limit was greater than the noninferiority margin of -10%. Eight patients experienced a total of eight procedure-related complications. No filter-related complications, such as migration, deformation, inferior vena cava (IVC) penetration, peripheral organ damage, or IVC stenosis/occlusion, were observed (P>0.05).</p><p><strong>Conclusions: </strong>The Octoparms filter exhibited a high rate of clinical success and a low rate of complications during placement and retrieval, demonstrating noninferiority to the Celect filter.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-24DOI: 10.21037/qims-24-786
Lihong Chen, Ning Pan, Bin Hu, Yaofeng Li, Shushan Dong, Yinan Zhou, Jianxin Guo, Jian Yang, Yongbai Luo, Zhijie Jian
Background: The effectiveness of coronary computed tomography (CT) angiography in assessing stent restenosis is hindered by heavy metal artifacts. This study aimed to evaluate the image quality of monoenergetic reconstructions and iodine density map for coronary stent imaging using an 8-cm dual-layer detector spectral CT.
Methods: In this study, 8 stents with a diameter <3 mm (group A) and 10 with a diameter ≥3 mm (group B) were placed in plastic tubes filled with iodinated contrast media and scanned. The internal diameter of the prepared stents was then measured by intravascular ultrasound. The reconstructed images included iodine density maps, conventional images, and different energy levels. The visualization of the stent lumen and stent structure was subjectively assessed using a 4-point Likert scale. The objective evaluation was performed using the in-stent lumen signal-to-noise ratio (SNRis), non-stent lumen SNR (SNRns), internal diameter difference (IDD), and blooming artifact index (BAI). The Friedman test and analysis of variance were used for multiple comparisons.
Results: For lumen visualization, the optimal monoenergetic images received the highest score for both group A (2.56±0.51) and group B (3.1±0.55). Multiple comparisons showed that there were significant differences between the optimal monoenergetic images and iodine density maps. However, for stent structure, iodine density maps received the highest score for group A (3.0±0.52) and group B (3.8±0.41). For quantitative assessment, the optimal monoenergetic images had the highest SNRis and SNRns, while the iodine density maps had the lowest SNRis and SNRns. For IDD and BAI, the iodine density maps yielded the smallest value.
Conclusions: The monoenergetic images on the second-generation dual-layer detector CT provide better visualization of the lumen and higher SNR. However, iodine density maps are superior for evaluating stent structure and IDD and BAI compared to monoenergetic and conventional reconstructions.
背景:重金属伪影阻碍了冠状动脉计算机断层扫描(CT)血管成像评估支架再狭窄的有效性。本研究旨在评估使用 8 厘米双层探测器光谱 CT 进行冠状动脉支架成像的单能重建和碘密度图的图像质量:方法:在这项研究中,使用了 8 个直径为 8 厘米的支架:在管腔显像方面,A 组(2.56±0.51)和 B 组(3.1±0.55)的最佳单能图像得分最高。多重比较显示,最佳单能图像和碘密度图之间存在显著差异。然而,在支架结构方面,碘密度图得分最高的是 A 组(3.0±0.52)和 B 组(3.8±0.41)。在定量评估方面,最佳单能图像的信噪比(SNRis)和信噪比(SNRns)最高,而碘密度图的信噪比(SNRis)和信噪比(SNRns)最低。就 IDD 和 BAI 而言,碘密度图产生的数值最小:结论:第二代双层探测器 CT 上的单能量图像能更好地显示管腔,信噪比也更高。然而,与单能量和传统重建相比,碘密度图在评估支架结构、IDD 和 BAI 方面更胜一筹。
{"title":"Monoenergetic reconstructions and iodine density maps for visualization of coronary artery stents using 8-cm dual-layer detector spectral computed tomography: an <i>in vitro</i> phantom study.","authors":"Lihong Chen, Ning Pan, Bin Hu, Yaofeng Li, Shushan Dong, Yinan Zhou, Jianxin Guo, Jian Yang, Yongbai Luo, Zhijie Jian","doi":"10.21037/qims-24-786","DOIUrl":"10.21037/qims-24-786","url":null,"abstract":"<p><strong>Background: </strong>The effectiveness of coronary computed tomography (CT) angiography in assessing stent restenosis is hindered by heavy metal artifacts. This study aimed to evaluate the image quality of monoenergetic reconstructions and iodine density map for coronary stent imaging using an 8-cm dual-layer detector spectral CT.</p><p><strong>Methods: </strong>In this study, 8 stents with a diameter <3 mm (group A) and 10 with a diameter ≥3 mm (group B) were placed in plastic tubes filled with iodinated contrast media and scanned. The internal diameter of the prepared stents was then measured by intravascular ultrasound. The reconstructed images included iodine density maps, conventional images, and different energy levels. The visualization of the stent lumen and stent structure was subjectively assessed using a 4-point Likert scale. The objective evaluation was performed using the in-stent lumen signal-to-noise ratio (SNRis), non-stent lumen SNR (SNRns), internal diameter difference (IDD), and blooming artifact index (BAI). The Friedman test and analysis of variance were used for multiple comparisons.</p><p><strong>Results: </strong>For lumen visualization, the optimal monoenergetic images received the highest score for both group A (2.56±0.51) and group B (3.1±0.55). Multiple comparisons showed that there were significant differences between the optimal monoenergetic images and iodine density maps. However, for stent structure, iodine density maps received the highest score for group A (3.0±0.52) and group B (3.8±0.41). For quantitative assessment, the optimal monoenergetic images had the highest SNRis and SNRns, while the iodine density maps had the lowest SNRis and SNRns. For IDD and BAI, the iodine density maps yielded the smallest value.</p><p><strong>Conclusions: </strong>The monoenergetic images on the second-generation dual-layer detector CT provide better visualization of the lumen and higher SNR. However, iodine density maps are superior for evaluating stent structure and IDD and BAI compared to monoenergetic and conventional reconstructions.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Photorefractive intrastromal corneal cross-linking (PiXL) treatment corrects myopia by enhancing localized central corneal biomechanics. However, the dose-effect relationship between the changes in corneal biomechanics and alterations in corneal curvature resulting from this treatment remain unclear. We therefore developed an acoustic radiation force optical coherence elastography (ARF-OCE) technique to investigate the dose-effect relationship in PiXL.
Methods: ARF-OCE measurements and corneal topography were performed 3 days before and 1 week after PiXL treatment. Depth-resolved Young's modulus images of the in vivo corneas were obtained based on the phase velocity of the Lamb wave. PiXL treatments with five ultraviolet-A (UVA) energy doses (5.4, 15, 25, 35, and 45 J/cm2) were administered to rabbit corneas in vivo (n=15).
Results: The percentage change in Young's modulus (ΔE%) of the cornea increased from 0.26 to 1.71 as the UVA energy dose increased from group I (5.4 J/cm2) to group V (45 J/cm2). Meanwhile, the change in the mean keratometry (ΔKm ) of the cornea increased from 0.40 to 2.10 diopters (D) as the UVA energy dose increased from group I to group IV (35 J/cm2). Furthermore, a statistically significant positive correlation was observed between ΔE% and ΔKm in groups I to IV.
Conclusions: With increasing UVA energy dose, the corneal Young's modulus significantly increased. Given the observed correlation, ΔE% holds promise as a new quantitative biomechanical parameter for determining the dose-effect relationship in PiXL treatment. It should be emphasized that there may be an inflection point of ΔE%, at which corneal keratometry ceases to flatten and begins to increase. The ARF-OCE system has demonstrated its efficacy in quantitatively assessing changes in corneal biomechanics in vivo following PiXL treatment. This technique has great potential in facilitating the quantitative determination of the dose-effect relationship in PiXL treatment.
{"title":"Quantitative assessment of corneal biomechanical changes in vivo after photorefractive intrastromal corneal cross-linking using optical coherence elastography.","authors":"Hongwei Yang, Yaoying Shen, Yong Chen, Yange Yan, Yingjie Li, Yongan Lu, Jingchao Liu, Xiaolong Yin, Guofu Huang, Yanzhi Zhao","doi":"10.21037/qims-24-590","DOIUrl":"10.21037/qims-24-590","url":null,"abstract":"<p><strong>Background: </strong>Photorefractive intrastromal corneal cross-linking (PiXL) treatment corrects myopia by enhancing localized central corneal biomechanics. However, the dose-effect relationship between the changes in corneal biomechanics and alterations in corneal curvature resulting from this treatment remain unclear. We therefore developed an acoustic radiation force optical coherence elastography (ARF-OCE) technique to investigate the dose-effect relationship in PiXL.</p><p><strong>Methods: </strong>ARF-OCE measurements and corneal topography were performed 3 days before and 1 week after PiXL treatment. Depth-resolved Young's modulus images of the in vivo corneas were obtained based on the phase velocity of the Lamb wave. PiXL treatments with five ultraviolet-A (UVA) energy doses (5.4, 15, 25, 35, and 45 J/cm<sup>2</sup>) were administered to rabbit corneas <i>in vivo</i> (n=15).</p><p><strong>Results: </strong>The percentage change in Young's modulus (ΔE%) of the cornea increased from 0.26 to 1.71 as the UVA energy dose increased from group I (5.4 J/cm<sup>2</sup>) to group V (45 J/cm<sup>2</sup>). Meanwhile, the change in the mean keratometry (Δ<i>K<sub>m</sub></i> ) of the cornea increased from 0.40 to 2.10 diopters (D) as the UVA energy dose increased from group I to group IV (35 J/cm<sup>2</sup>). Furthermore, a statistically significant positive correlation was observed between ΔE% and Δ<i>K<sub>m</sub></i> in groups I to IV.</p><p><strong>Conclusions: </strong>With increasing UVA energy dose, the corneal Young's modulus significantly increased. Given the observed correlation, ΔE% holds promise as a new quantitative biomechanical parameter for determining the dose-effect relationship in PiXL treatment. It should be emphasized that there may be an inflection point of ΔE%, at which corneal keratometry ceases to flatten and begins to increase. The ARF-OCE system has demonstrated its efficacy in quantitatively assessing changes in corneal biomechanics <i>in vivo</i> following PiXL treatment. This technique has great potential in facilitating the quantitative determination of the dose-effect relationship in PiXL treatment.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485357/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Background: </strong>The long-term monitoring of biventricular function is essential to identify potential functional decline in patients following the arterial switch operation (ASO). The underlying pathophysiological mechanisms responsible for altered biventricular hemodynamics in ASO patients are not yet well understood. This study sought to: (I) compare the biventricular kinetic energy (KE) and vorticity of ASO patients and age- and sex-matched controls; (II) investigate the associations of four-dimensional (4D) flow biventricular hemodynamics parameters and neo-aortic root dilation, supravalvular pulmonary stenosis, and pulmonary artery transvalvular pressure difference.</p><p><strong>Methods: </strong>A total of 34 patients with dextro-transposition of the great arteries (D-TGA) who underwent ASO, and 17 age- and gender-matched healthy controls were prospectively recruited for this study. All the subjects underwent cine and 4D flow and late gadolinium enhancement scans, and all the patients underwent echocardiography within two weeks of cardiovascular magnetic resonance (CMR) imaging. The following four flow components were analyzed: direct flow, retained inflow, delayed ejection flow, and residual volume. In addition, the following six phasic blood flow KE parameters, normalized to the end-diastolic volume (EDV) and vorticity, were analyzed for both the left ventricle (LV) and right ventricle (RV): peak systolic phase, average systolic phase, peak diastolic phase, average diastolic phase, peak E-wave phase, and peak A-wave phase. The independent sample Student's <i>t</i>-test, Mann-Whitney U-test, univariable and multivariable stepwise regression analyses, intra and inter-observer variability analyses were used to compare patients and controls.</p><p><strong>Results: </strong>In relation to the LV, the D-TGA patients had significantly decreased average vorticity, peak systolic vorticity, systolic vorticity, diastolic vorticity, and peak A-wave vorticity compared to the controls (all P<0.01). In relation to the RV, the pulmonary stenosis group had significantly increased peak E- and A-wave kinetic energy normalized to the end-diastolic volume (KEi<sub>EDV</sub>), and peak and average vorticity compared to the non-pulmonary stenosis group (all P<0.05). in the multivariable logistic regression model analysis, diastolic KEi<sub>EDV</sub>, peak E-wave KEi<sub>EDV</sub> peak A-wave KEi<sub>EDV,</sub> and average vorticity were associated a with transvalvular pressure difference (β=13.54, P<0.001 for diastolic KEi<sub>EDV</sub>; β=105.26, P<0.001 for peak E-wave KEi<sub>EDV</sub>; β=-49.36, P=0.027 for peak A-wave KEi<sub>EDV</sub>; and β=-56.37, P<0.001 for average vorticity).</p><p><strong>Conclusions: </strong>We found that 4D flow biventricular hemodynamics were more sensitive markers than the ejection fraction in the postoperative D-TGA patients. The RV diastolic KEi<sub>EDV</sub> parameters and average vorticity were risk factors
背景:长期监测双心室功能对于识别动脉转流手术(ASO)后患者潜在的功能衰退至关重要。导致 ASO 患者双心室血流动力学改变的潜在病理生理学机制尚不十分清楚。本研究旨在(I)比较ASO患者与年龄和性别匹配的对照组的双心室动能(KE)和涡度;(II)研究四维(4D)血流双心室血流动力学参数与新主动脉根扩张、瓣上肺动脉狭窄和肺动脉跨瓣压差的关系:本研究前瞻性地招募了 34 名接受 ASO 手术的大动脉右侧横位(D-TGA)患者和 17 名年龄和性别匹配的健康对照者。所有受试者均接受了 cine 和 4D 血流扫描以及晚期钆增强扫描,所有患者均在心血管磁共振(CMR)成像后两周内接受了超声心动图检查。对以下四种血流成分进行了分析:直接血流、潴留血流、延迟射血血流和残余容积。此外,还分析了左心室(LV)和右心室(RV)的以下六个与舒张末容积(EDV)和涡度归一化的阶段性血流 KE 参数:收缩期峰值、平均收缩期峰值、舒张期峰值、平均舒张期峰值、E 波峰值和 A 波峰值。采用独立样本学生 t 检验、曼-惠特尼 U 检验、单变量和多变量逐步回归分析、观察者内和观察者间变异性分析来比较患者和对照组:就左心室而言,与对照组相比,D-TGA 患者的平均涡度、收缩期峰值涡度、收缩期涡度、舒张期涡度和 A 波峰值涡度均显著降低(均为 PEDV),与非肺动脉狭窄组相比,峰值涡度和平均涡度均显著降低(均为 PEDV),E 波峰值 KEiEDV、A 波峰值 KEiEDV 和平均涡度与跨瓣压差相关(β=13.54,PEDV;β=105.26,PEDV;β=-49.36,A 波峰值 KEiEDV,P=0.027;β=-56.37,PConclusions:我们发现,在术后D-TGA患者中,4D血流双心室血流动力学是比射血分数更敏感的指标。在多变量模型中,RV 舒张期 KEiEDV 参数和平均涡度是肺动脉阻塞的危险因素。
{"title":"Characteristics of altered biventricular hemodynamics after arterial switch operation for patients with d-transposition of the great arteries with preserved ejection fraction: a four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) study.","authors":"Li-Wei Hu, Xin-Rong Liu, Rong-Zhen Ouyang, Li-Jun Chen, Ai-Min Sun, Chen Guo, Xiao-Fen Yao, Yan-Yan Ma, Le Feng, Ting-Fan Wu, Qian Wang, Yu-Min Zhong","doi":"10.21037/qims-24-840","DOIUrl":"10.21037/qims-24-840","url":null,"abstract":"<p><strong>Background: </strong>The long-term monitoring of biventricular function is essential to identify potential functional decline in patients following the arterial switch operation (ASO). The underlying pathophysiological mechanisms responsible for altered biventricular hemodynamics in ASO patients are not yet well understood. This study sought to: (I) compare the biventricular kinetic energy (KE) and vorticity of ASO patients and age- and sex-matched controls; (II) investigate the associations of four-dimensional (4D) flow biventricular hemodynamics parameters and neo-aortic root dilation, supravalvular pulmonary stenosis, and pulmonary artery transvalvular pressure difference.</p><p><strong>Methods: </strong>A total of 34 patients with dextro-transposition of the great arteries (D-TGA) who underwent ASO, and 17 age- and gender-matched healthy controls were prospectively recruited for this study. All the subjects underwent cine and 4D flow and late gadolinium enhancement scans, and all the patients underwent echocardiography within two weeks of cardiovascular magnetic resonance (CMR) imaging. The following four flow components were analyzed: direct flow, retained inflow, delayed ejection flow, and residual volume. In addition, the following six phasic blood flow KE parameters, normalized to the end-diastolic volume (EDV) and vorticity, were analyzed for both the left ventricle (LV) and right ventricle (RV): peak systolic phase, average systolic phase, peak diastolic phase, average diastolic phase, peak E-wave phase, and peak A-wave phase. The independent sample Student's <i>t</i>-test, Mann-Whitney U-test, univariable and multivariable stepwise regression analyses, intra and inter-observer variability analyses were used to compare patients and controls.</p><p><strong>Results: </strong>In relation to the LV, the D-TGA patients had significantly decreased average vorticity, peak systolic vorticity, systolic vorticity, diastolic vorticity, and peak A-wave vorticity compared to the controls (all P<0.01). In relation to the RV, the pulmonary stenosis group had significantly increased peak E- and A-wave kinetic energy normalized to the end-diastolic volume (KEi<sub>EDV</sub>), and peak and average vorticity compared to the non-pulmonary stenosis group (all P<0.05). in the multivariable logistic regression model analysis, diastolic KEi<sub>EDV</sub>, peak E-wave KEi<sub>EDV</sub> peak A-wave KEi<sub>EDV,</sub> and average vorticity were associated a with transvalvular pressure difference (β=13.54, P<0.001 for diastolic KEi<sub>EDV</sub>; β=105.26, P<0.001 for peak E-wave KEi<sub>EDV</sub>; β=-49.36, P=0.027 for peak A-wave KEi<sub>EDV</sub>; and β=-56.37, P<0.001 for average vorticity).</p><p><strong>Conclusions: </strong>We found that 4D flow biventricular hemodynamics were more sensitive markers than the ejection fraction in the postoperative D-TGA patients. The RV diastolic KEi<sub>EDV</sub> parameters and average vorticity were risk factors","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-26DOI: 10.21037/qims-24-664
Lujiao Chen, Bo Chen, Zhenhua Zhao, Liyijing Shen
<p><strong>Background: </strong>Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most-deadly malignancies worldwide. Lung cancer has a worse 5-year survival rate than many primary malignancies. Thus, the early detection and prognosis prediction of lung cancer are crucial. The early detection and prognosis prediction of lung cancer have improved with the widespread use of artificial intelligence (AI) technologies. This meta-analysis examined the accuracy and efficacy of AI-based models in predicting lymph node metastasis (LNM) in NSCLC patients using imaging data. Our findings could help clinicians predict patient prognosis and select alternative therapies.</p><p><strong>Methods: </strong>We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles published up to January 31, 2024. Two reviewers individually evaluated all the retrieved articles to assess their eligibility for inclusion in the meta-analysis. The systematic assessment and meta-analysis comprised articles that satisfied the inclusion criteria (e.g., randomized or non-randomized trials, and observational studies) and exclusion criteria (e.g., articles not published in English), and provided data for the quantitative synthesis. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled sensitivity, specificity, and area under the curve (AUC) were used to evaluate the ability of AI-based imaging models to predict LNM in NSCLC patients. Sources of heterogeneity were investigated using meta-regression. Covariates, including country, sample size, imaging modality, model validation technique, and model algorithm, were examined in the subgroup analysis.</p><p><strong>Results: </strong>The final meta-analysis comprised 11 retrospective studies of 6,088 NSCLC patients, of whom 1,483 had LNM. The pooled sensitivity, specificity, and AUC of the AI-based imaging model for predicting LNM in NSCLC patients were 0.87 [95% confidence interval (CI): 0.80-0.91], 0.85 (95% CI: 0.78-0.89), and 0.92 (95% CI: 0.90-0.94). Based on the QUADAS-2 results, a risk of bias was detected in the patient selection and diagnostic tests of the included articles. However, the quality of the included articles was generally acceptable. The pooled sensitivity and specificity were heterogeneous (I<sup>2</sup>>75%). The meta-regression and subgroup analyses showed that imaging modality [computed tomography (CT) or positron emission tomography (PET)/CT], and the neural network method model design significantly affected heterogeneity of this study. Models employing sample size data from a single center and the least absolute shrinkage and selection operator (LASSO) method had greater sensitivity than other techniques. Using the Deek' s funnel plot, no publishing bias was found. The results of the sensitivity analysis showed that deleting each article one by one did not change the findings
{"title":"Using artificial intelligence based imaging to predict lymph node metastasis in non-small cell lung cancer: a systematic review and meta-analysis.","authors":"Lujiao Chen, Bo Chen, Zhenhua Zhao, Liyijing Shen","doi":"10.21037/qims-24-664","DOIUrl":"10.21037/qims-24-664","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most-deadly malignancies worldwide. Lung cancer has a worse 5-year survival rate than many primary malignancies. Thus, the early detection and prognosis prediction of lung cancer are crucial. The early detection and prognosis prediction of lung cancer have improved with the widespread use of artificial intelligence (AI) technologies. This meta-analysis examined the accuracy and efficacy of AI-based models in predicting lymph node metastasis (LNM) in NSCLC patients using imaging data. Our findings could help clinicians predict patient prognosis and select alternative therapies.</p><p><strong>Methods: </strong>We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles published up to January 31, 2024. Two reviewers individually evaluated all the retrieved articles to assess their eligibility for inclusion in the meta-analysis. The systematic assessment and meta-analysis comprised articles that satisfied the inclusion criteria (e.g., randomized or non-randomized trials, and observational studies) and exclusion criteria (e.g., articles not published in English), and provided data for the quantitative synthesis. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled sensitivity, specificity, and area under the curve (AUC) were used to evaluate the ability of AI-based imaging models to predict LNM in NSCLC patients. Sources of heterogeneity were investigated using meta-regression. Covariates, including country, sample size, imaging modality, model validation technique, and model algorithm, were examined in the subgroup analysis.</p><p><strong>Results: </strong>The final meta-analysis comprised 11 retrospective studies of 6,088 NSCLC patients, of whom 1,483 had LNM. The pooled sensitivity, specificity, and AUC of the AI-based imaging model for predicting LNM in NSCLC patients were 0.87 [95% confidence interval (CI): 0.80-0.91], 0.85 (95% CI: 0.78-0.89), and 0.92 (95% CI: 0.90-0.94). Based on the QUADAS-2 results, a risk of bias was detected in the patient selection and diagnostic tests of the included articles. However, the quality of the included articles was generally acceptable. The pooled sensitivity and specificity were heterogeneous (I<sup>2</sup>>75%). The meta-regression and subgroup analyses showed that imaging modality [computed tomography (CT) or positron emission tomography (PET)/CT], and the neural network method model design significantly affected heterogeneity of this study. Models employing sample size data from a single center and the least absolute shrinkage and selection operator (LASSO) method had greater sensitivity than other techniques. Using the Deek' s funnel plot, no publishing bias was found. The results of the sensitivity analysis showed that deleting each article one by one did not change the findings","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-26DOI: 10.21037/qims-24-575
Xin He, Siqian Gu, Yuyang Xie, Ling Yang
<p><strong>Background: </strong>Dual-layer spectral computed tomography (DSCT) is capable of acquiring both conventional and spectral images during one routine scan, and is widely used for the quantitative and qualitative analyses of substances, differential diagnosis, and disease staging. However, limited research has been conducted on its performance in the differential diagnosis of benign and malignant breast nodules using non-enhanced scans. This study aimed to assess the diagnostic performance of multiple quantitative parameters derived from non-enhanced DSCT in differentiating benign from malignant breast nodules.</p><p><strong>Methods: </strong>This retrospective cross-sectional study examined a total of 121 breast nodules from 114 patients (malignant group: n=68; benign group: n=53) identified during chest physical examination or routine admission for the treatment of breast diseases at The First Affiliated Hospital of Soochow University from March 2023 to December 2023. All the patients underwent DSCT scanning and pathological diagnosis. The DSCT quantitative parameters, including the effective atomic number (Zeff), computed tomography (CT) attenuation values at 40-70 keV, and the slope of the spectral Hounsfield unit curve (λHU), in non-enhanced images were measured. The λHU was calculated as follows: λHU = CT70 keV - CT40 keV/30 HU. Additionally, typical radiological features were analyzed. A DSCT parameter diagnostic model and a conventional CT diagnostic model were assessed using receiver operating characteristic (ROC) curves. The Delong test was used to assess and compare the diagnostic performance of each model.</p><p><strong>Results: </strong>The DSCT parameters, including the Zeff (P<0.001), λHU (P<0.001), and CT attenuation values at 40 keV (P<0.001) and 50 keV (P=0.001), as well as the presence of the lobular sign (P<0.001) and spicule sign (P<0.001), exhibited statistically significant differences between the benign and malignant groups. The logistic regression analysis revealed that the Zeff [odds ratio (OR): 9.22; 95% confidence interval (CI): 2.11-40.35; P=0.003], λHU (OR: 0.64; 95% CI: 0.52-0.79; P<0.001), 40 keV CT attenuation value (OR: 8.69; 95% CI: 3.28-23.06; P<0.001), 50 keV CT attenuation value (OR: 0.01; 95% CI: 0.001-0.07; P<0.001), and lobular sign (OR: 3.95; 95% CI: 1.52-10.31; P=0.005) were independent predictors of malignancy. Compared to the benign group, the malignant group had a higher likelihood of presenting with the lobular sign and higher Zeff values but lower λHU values. The ROC curve indicated that the Zeff had the highest diagnostic efficacy [area under the curve (AUC) of the ROC =0.792, 95% CI: 0.71-0.87]. Further, the DSCT parameter diagnostic model had improved diagnostic efficacy with an AUC of 0.899 (95% CI: 0.84-0.96), which was higher than the AUC of the conventional CT diagnostic model (AUC =0.796, 95% CI: 0.72-0.87). The Delong test revealed a statistically significant difference between the
{"title":"Value of spectral parameters in the differential diagnosis of benign and malignant breast nodules in non-enhanced chest CT.","authors":"Xin He, Siqian Gu, Yuyang Xie, Ling Yang","doi":"10.21037/qims-24-575","DOIUrl":"10.21037/qims-24-575","url":null,"abstract":"<p><strong>Background: </strong>Dual-layer spectral computed tomography (DSCT) is capable of acquiring both conventional and spectral images during one routine scan, and is widely used for the quantitative and qualitative analyses of substances, differential diagnosis, and disease staging. However, limited research has been conducted on its performance in the differential diagnosis of benign and malignant breast nodules using non-enhanced scans. This study aimed to assess the diagnostic performance of multiple quantitative parameters derived from non-enhanced DSCT in differentiating benign from malignant breast nodules.</p><p><strong>Methods: </strong>This retrospective cross-sectional study examined a total of 121 breast nodules from 114 patients (malignant group: n=68; benign group: n=53) identified during chest physical examination or routine admission for the treatment of breast diseases at The First Affiliated Hospital of Soochow University from March 2023 to December 2023. All the patients underwent DSCT scanning and pathological diagnosis. The DSCT quantitative parameters, including the effective atomic number (Zeff), computed tomography (CT) attenuation values at 40-70 keV, and the slope of the spectral Hounsfield unit curve (λHU), in non-enhanced images were measured. The λHU was calculated as follows: λHU = CT70 keV - CT40 keV/30 HU. Additionally, typical radiological features were analyzed. A DSCT parameter diagnostic model and a conventional CT diagnostic model were assessed using receiver operating characteristic (ROC) curves. The Delong test was used to assess and compare the diagnostic performance of each model.</p><p><strong>Results: </strong>The DSCT parameters, including the Zeff (P<0.001), λHU (P<0.001), and CT attenuation values at 40 keV (P<0.001) and 50 keV (P=0.001), as well as the presence of the lobular sign (P<0.001) and spicule sign (P<0.001), exhibited statistically significant differences between the benign and malignant groups. The logistic regression analysis revealed that the Zeff [odds ratio (OR): 9.22; 95% confidence interval (CI): 2.11-40.35; P=0.003], λHU (OR: 0.64; 95% CI: 0.52-0.79; P<0.001), 40 keV CT attenuation value (OR: 8.69; 95% CI: 3.28-23.06; P<0.001), 50 keV CT attenuation value (OR: 0.01; 95% CI: 0.001-0.07; P<0.001), and lobular sign (OR: 3.95; 95% CI: 1.52-10.31; P=0.005) were independent predictors of malignancy. Compared to the benign group, the malignant group had a higher likelihood of presenting with the lobular sign and higher Zeff values but lower λHU values. The ROC curve indicated that the Zeff had the highest diagnostic efficacy [area under the curve (AUC) of the ROC =0.792, 95% CI: 0.71-0.87]. Further, the DSCT parameter diagnostic model had improved diagnostic efficacy with an AUC of 0.899 (95% CI: 0.84-0.96), which was higher than the AUC of the conventional CT diagnostic model (AUC =0.796, 95% CI: 0.72-0.87). The Delong test revealed a statistically significant difference between the","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.21037/qims-24-724
Ping Zhang, Dong Li, De-Fu Meng, Meng-Yang Cai, Guang-Lei Li
When treating femoral fractures with closed reduction intramedullary nail fixation, excessive residual displacement of the fracture end can affect the fixation effect and prolong the healing time, which is difficult to manage intraoperatively. This article introduces a simple steel wire cerclage fixation technique, which is percutaneous and can control the incision within 1 cm without excessive reliance on specially designed surgical instruments. It is suitable for the reduction and fixation of oblique femoral metaphysis fractures and butterfly-shaped femoral shaft fracture blocks.
{"title":"Dual-channel minimally invasive percutaneous cerclage for femoral shaft and metaphysis fractures during the internal fixation with intramedullary nails: case reports and technical description.","authors":"Ping Zhang, Dong Li, De-Fu Meng, Meng-Yang Cai, Guang-Lei Li","doi":"10.21037/qims-24-724","DOIUrl":"10.21037/qims-24-724","url":null,"abstract":"<p><p>When treating femoral fractures with closed reduction intramedullary nail fixation, excessive residual displacement of the fracture end can affect the fixation effect and prolong the healing time, which is difficult to manage intraoperatively. This article introduces a simple steel wire cerclage fixation technique, which is percutaneous and can control the incision within 1 cm without excessive reliance on specially designed surgical instruments. It is suitable for the reduction and fixation of oblique femoral metaphysis fractures and butterfly-shaped femoral shaft fracture blocks.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The precise identification of the position and form of a tumor mass can improve early diagnosis and treatment. However, due to the complicated tumor categories and varying sizes and forms, the segregation of brain gliomas and their internal sub-regions is still very challenging. This study sought to design a new deep-learning network based on three-dimensional (3D) U-Net to address its shortcomings in brain tumor segmentation (BraTS) tasks.
Methods: We developed a 3D dilated multi-scale residual attention U-Net (DMRA-U-Net) model for magnetic resonance imaging (MRI) BraTS. It used dilated convolution residual (DCR) modules to better process shallow features, multi-scale convolution residual (MCR) modules in the bottom encoding path to create richer and more comprehensive feature expression while reducing overall information loss or blurring, and a channel attention (CA) module between the encoding and decoding paths to address the problem of retrieving and preserving important features during the processing of deep feature maps.
Results: The BraTS 2018-2021 datasets served as the training and evaluation datasets for this study. Further, the proposed architecture was assessed using metrics such as the dice similarity coefficient (DSC), Hausdorff distance (HD), and sensitivity (Sens). The DMRA U-Net model segments the whole tumor (WT), and the tumor core (TC), and the enhancing tumor (ET) regions of brain tumors. Using the suggested architecture, the DSCs were 0.9012, 0.8867, and 0.8813, the HDs were 28.86, 13.34, and 10.88 mm, and the Sens was 0.9429, 0.9452, and 0.9303 for the WT, TC, and ET regions, respectively. Compared to the traditional 3D U-Net, the DSC of the DMRA U-Net increased by 4.5%, 2.5%, and 0.8%, the HD of the DMRA U-Net decreased by 21.83, 16.42, and 10.00, the Sens of the DMRA U-Net increased by 0.4%, 0.7%, and 1.4% for the WT, TC, and ET regions, respectively. Further, the results of the statistical comparison of the performance indicators revealed that our model performed well generally in the segmentation of the WT, TC, and ET regions.
Conclusions: We developed a promising tumor segmentation model. Our solution is open sourced and is available at: https://github.com/Gold3nk/dmra-unet.
{"title":"Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation.","authors":"Lihong Zhang, Yuzhuo Li, Yingbo Liang, Chongxin Xu, Tong Liu, Junding Sun","doi":"10.21037/qims-24-779","DOIUrl":"10.21037/qims-24-779","url":null,"abstract":"<p><strong>Background: </strong>The precise identification of the position and form of a tumor mass can improve early diagnosis and treatment. However, due to the complicated tumor categories and varying sizes and forms, the segregation of brain gliomas and their internal sub-regions is still very challenging. This study sought to design a new deep-learning network based on three-dimensional (3D) U-Net to address its shortcomings in brain tumor segmentation (BraTS) tasks.</p><p><strong>Methods: </strong>We developed a 3D dilated multi-scale residual attention U-Net (DMRA-U-Net) model for magnetic resonance imaging (MRI) BraTS. It used dilated convolution residual (DCR) modules to better process shallow features, multi-scale convolution residual (MCR) modules in the bottom encoding path to create richer and more comprehensive feature expression while reducing overall information loss or blurring, and a channel attention (CA) module between the encoding and decoding paths to address the problem of retrieving and preserving important features during the processing of deep feature maps.</p><p><strong>Results: </strong>The BraTS 2018-2021 datasets served as the training and evaluation datasets for this study. Further, the proposed architecture was assessed using metrics such as the dice similarity coefficient (DSC), Hausdorff distance (HD), and sensitivity (Sens). The DMRA U-Net model segments the whole tumor (WT), and the tumor core (TC), and the enhancing tumor (ET) regions of brain tumors. Using the suggested architecture, the DSCs were 0.9012, 0.8867, and 0.8813, the HDs were 28.86, 13.34, and 10.88 mm, and the Sens was 0.9429, 0.9452, and 0.9303 for the WT, TC, and ET regions, respectively. Compared to the traditional 3D U-Net, the DSC of the DMRA U-Net increased by 4.5%, 2.5%, and 0.8%, the HD of the DMRA U-Net decreased by 21.83, 16.42, and 10.00, the Sens of the DMRA U-Net increased by 0.4%, 0.7%, and 1.4% for the WT, TC, and ET regions, respectively. Further, the results of the statistical comparison of the performance indicators revealed that our model performed well generally in the segmentation of the WT, TC, and ET regions.</p><p><strong>Conclusions: </strong>We developed a promising tumor segmentation model. Our solution is open sourced and is available at: https://github.com/Gold3nk/dmra-unet.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-26DOI: 10.21037/qims-24-485
Wei Hu, Hanbing Shao, Xibiao Yang, Linmao Zheng, Shuang Li, Qiaoyue Tan, Ni Chen, Qiang Yue, Xiaorui Su
{"title":"Multimodal magnetic resonance imaging (MRI) of juvenile and adult diffuse hemispheric gliomas with H3 G34-mutation: a case description.","authors":"Wei Hu, Hanbing Shao, Xibiao Yang, Linmao Zheng, Shuang Li, Qiaoyue Tan, Ni Chen, Qiang Yue, Xiaorui Su","doi":"10.21037/qims-24-485","DOIUrl":"10.21037/qims-24-485","url":null,"abstract":"","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}