G. Pérez-Callejo, V. Bouffetier, L. Ceurvorst, T. Goudal, S. Klein, D. Svyatskiy, M. Holec, P. Perez-Martin, K. Falk, A. Casner, T. Weber, G. Kagan, M. Valdivia
Abstract Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above ${10}^{22};{mathrm{cm}}^{-3}$ . These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.
{"title":"Phase imaging of irradiated foils at the OMEGA EP facility using phase-stepping X-ray Talbot–Lau deflectometry","authors":"G. Pérez-Callejo, V. Bouffetier, L. Ceurvorst, T. Goudal, S. Klein, D. Svyatskiy, M. Holec, P. Perez-Martin, K. Falk, A. Casner, T. Weber, G. Kagan, M. Valdivia","doi":"10.1017/hpl.2023.44","DOIUrl":"https://doi.org/10.1017/hpl.2023.44","url":null,"abstract":"Abstract Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above \u0000${10}^{22};{mathrm{cm}}^{-3}$\u0000 . These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90259210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiqi Yu, Dirui Xu, B. Shen, T. Cowan, H. Schlenvoigt
Abstract Polarimetry is a highly sensitive method to quantify changes of the polarization state of light when passing through matter and is therefore widely applied in material science. The progress of synchrotron and X-ray free electron laser (XFEL) sources has led to significant developments of X-ray polarizers, opening perspectives for new applications of polarimetry to study source and beamline parameters as well as sample characteristics. X-ray polarimetry has shown to date a polarization purity of less than $1.4times {10}^{-11}$ , enabling the detection of very small signals from ultrafast phenomena. A prominent application is the detection of vacuum birefringence. Vacuum birefringence is predicted in quantum electrodynamics and is expected to be probed by combining an XFEL with a petawatt-class optical laser. We review how source and optical elements affect X-ray polarimeters in general and which qualities are required for the detection of vacuum birefringence.
{"title":"X-ray polarimetry and its application to strong-field quantum electrodynamics","authors":"Qiqi Yu, Dirui Xu, B. Shen, T. Cowan, H. Schlenvoigt","doi":"10.1017/hpl.2023.45","DOIUrl":"https://doi.org/10.1017/hpl.2023.45","url":null,"abstract":"Abstract Polarimetry is a highly sensitive method to quantify changes of the polarization state of light when passing through matter and is therefore widely applied in material science. The progress of synchrotron and X-ray free electron laser (XFEL) sources has led to significant developments of X-ray polarizers, opening perspectives for new applications of polarimetry to study source and beamline parameters as well as sample characteristics. X-ray polarimetry has shown to date a polarization purity of less than \u0000$1.4times {10}^{-11}$\u0000 , enabling the detection of very small signals from ultrafast phenomena. A prominent application is the detection of vacuum birefringence. Vacuum birefringence is predicted in quantum electrodynamics and is expected to be probed by combining an XFEL with a petawatt-class optical laser. We review how source and optical elements affect X-ray polarimeters in general and which qualities are required for the detection of vacuum birefringence.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"44 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82410479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyun Du, Meiping Zhu, Jun Shi, Tianbao Liu, Jian Sun, Kui Yi, J. Shao
Abstract The laser-induced damage threshold (LIDT) of plate laser beam splitter (PLBS) coatings is closely related to the subsurface absorption defects of the substrate. Herein, a two-step deposition temperature method is proposed to understand the effect of substrate subsurface impurity defects on the LIDT of PLBS coatings. Firstly, BK7 substrates are heat-treated at three different temperatures. The surface morphology and subsurface impurity defect distribution of the substrate before and after the heat treatment are compared. Then, a PLBS coating consisting of alternating HfO2–Al2O3 mixture and SiO2 layers is designed to achieve a beam-splitting ratio (transmittance to reflectance, s-polarized light) of approximately 50:50 at 1053 nm and an angle of incidence of 45°, and it is prepared under four different deposition processes. The experimental and simulation results show that the subsurface impurity defects of the substrate migrate to the surface and accumulate on the surface during the heat treatment, and become absorption defect sources or nodule defect seeds in the coating, reducing the LIDT of the coating. The higher the heat treatment temperature, the more evident the migration and accumulation of impurity defects. A lower deposition temperature (at which the coating can be fully oxidized) helps to improve the LIDT of the PLBS coating. When the deposition temperature is 140°C, the LIDT (s-polarized light, wavelength: 1064 nm, pulse width: 9 ns, incident angle: 45°) of the PLBS coating is 26.2 J/cm2, which is approximately 6.7 times that of the PLBS coating deposited at 200°C. We believe that the investigation into the laser damage mechanism of PLBS coatings will help to improve the LIDT of coatings with partial or high transmittance at laser wavelengths.
{"title":"Effect of subsurface impurity defects on laser damage resistance of beam splitter coatings","authors":"Wenyun Du, Meiping Zhu, Jun Shi, Tianbao Liu, Jian Sun, Kui Yi, J. Shao","doi":"10.1017/hpl.2023.37","DOIUrl":"https://doi.org/10.1017/hpl.2023.37","url":null,"abstract":"Abstract The laser-induced damage threshold (LIDT) of plate laser beam splitter (PLBS) coatings is closely related to the subsurface absorption defects of the substrate. Herein, a two-step deposition temperature method is proposed to understand the effect of substrate subsurface impurity defects on the LIDT of PLBS coatings. Firstly, BK7 substrates are heat-treated at three different temperatures. The surface morphology and subsurface impurity defect distribution of the substrate before and after the heat treatment are compared. Then, a PLBS coating consisting of alternating HfO2–Al2O3 mixture and SiO2 layers is designed to achieve a beam-splitting ratio (transmittance to reflectance, s-polarized light) of approximately 50:50 at 1053 nm and an angle of incidence of 45°, and it is prepared under four different deposition processes. The experimental and simulation results show that the subsurface impurity defects of the substrate migrate to the surface and accumulate on the surface during the heat treatment, and become absorption defect sources or nodule defect seeds in the coating, reducing the LIDT of the coating. The higher the heat treatment temperature, the more evident the migration and accumulation of impurity defects. A lower deposition temperature (at which the coating can be fully oxidized) helps to improve the LIDT of the PLBS coating. When the deposition temperature is 140°C, the LIDT (s-polarized light, wavelength: 1064 nm, pulse width: 9 ns, incident angle: 45°) of the PLBS coating is 26.2 J/cm2, which is approximately 6.7 times that of the PLBS coating deposited at 200°C. We believe that the investigation into the laser damage mechanism of PLBS coatings will help to improve the LIDT of coatings with partial or high transmittance at laser wavelengths.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"22 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78907791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $unicode{x3bc}$ m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $unicode{x3bc}$ m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.
在这项工作中,我们提出了一个工作在1.5 $unicode{x3bc}$ m的高功率,高重复率的全光纤飞秒激光系统。该全光纤激光系统可以以10.6 GHz的基本重复率发送飞秒脉冲,平均输出功率为106.4 W -据我们所知,这是迄今为止报道的1.5 $unicode{x3bc}$ m的全光纤飞秒激光器的最高平均功率。利用基于孤子效应的脉冲压缩效应和优化的预啁啾色散,放大后的脉冲在全光纤配置下被压缩到239 fs。在这种高功率超快光纤激光系统的支持下,我们进一步探索了LP01, LP11和LP21横向模式之间的非线性相互作用,这些模式有望在使用大模面积光纤的光纤激光系统中存在。从理论上研究了多模态调制不稳定性,并随后在我们的实验中确定了这种不稳定性。这种高功率全光纤超快激光器没有笨重的自由空间光学元件,预计将成为一种有前途的激光源,用于特别要求紧凑和强大的操作。
{"title":"Nonlinear chirped pulse amplification for a 100-W-class GHz femtosecond all-fiber laser system at 1.5 \u0000$unicode{x3bc}$\u0000 m","authors":"Yixuan Fan, Hao Xiu, Wei Lin, Xuewen Chen, Xu Hu, Wenlong Wang, Junpeng Wen, Hao Tian, Molei Hao, Chiyi Wei, Luyi Wang, Xiaoming Wei, Zhong-zhu Yang","doi":"10.1017/hpl.2023.36","DOIUrl":"https://doi.org/10.1017/hpl.2023.36","url":null,"abstract":"Abstract In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 \u0000$unicode{x3bc}$\u0000 m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 \u0000$unicode{x3bc}$\u0000 m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"85 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90252234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}