Pub Date : 2024-03-18DOI: 10.1109/TCDS.2024.3377642
Guang Han;Jianshu Ma;Ziyang Li;Haitao Zhao
With the development of transformer visual models, attention-based trackers have shown highly competitive performance in the field of object tracking. However, in some tracking scenarios, especially those with multiple similar objects, the performance of existing trackers is often not satisfactory. In order to improve the performance of trackers in such scenarios, inspired by the fovea vision structure and its visual characteristics, this article proposes a novel foveal vision tracker (FVT). FVT combines the process of human eye fixation and object tracking, pruning based on the distance to the object rather than attention scores. This pruning method allows the receptive field of the feature extraction network to focus on the object, excluding background interference. FVT divides the feature extraction network into two stages: local and global, and introduces the local recursive module (LRM) and the view elimination module (VEM). LRM is used to enhance foreground features in the local stage, while VEM generates circular fovea-like visual field masks in the global stage and prunes tokens outside the mask, guiding the model to focus attention on high-information regions of the object. Experimental results on multiple object tracking datasets demonstrate that the proposed FVT achieves stronger object discrimination capability in the feature extraction stage, improves tracking accuracy and robustness in complex scenes, and achieves a significant accuracy improvement with an area overlap (AO) of 72.6% on the generic object tracking (GOT)-10k dataset.
{"title":"A Two-Stage Foveal Vision Tracker Based on Transformer Model","authors":"Guang Han;Jianshu Ma;Ziyang Li;Haitao Zhao","doi":"10.1109/TCDS.2024.3377642","DOIUrl":"10.1109/TCDS.2024.3377642","url":null,"abstract":"With the development of transformer visual models, attention-based trackers have shown highly competitive performance in the field of object tracking. However, in some tracking scenarios, especially those with multiple similar objects, the performance of existing trackers is often not satisfactory. In order to improve the performance of trackers in such scenarios, inspired by the fovea vision structure and its visual characteristics, this article proposes a novel foveal vision tracker (FVT). FVT combines the process of human eye fixation and object tracking, pruning based on the distance to the object rather than attention scores. This pruning method allows the receptive field of the feature extraction network to focus on the object, excluding background interference. FVT divides the feature extraction network into two stages: local and global, and introduces the local recursive module (LRM) and the view elimination module (VEM). LRM is used to enhance foreground features in the local stage, while VEM generates circular fovea-like visual field masks in the global stage and prunes tokens outside the mask, guiding the model to focus attention on high-information regions of the object. Experimental results on multiple object tracking datasets demonstrate that the proposed FVT achieves stronger object discrimination capability in the feature extraction stage, improves tracking accuracy and robustness in complex scenes, and achieves a significant accuracy improvement with an area overlap (AO) of 72.6% on the generic object tracking (GOT)-10k dataset.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1575-1588"},"PeriodicalIF":5.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1109/TCDS.2024.3375620
Hong You;Xian Zhong;Wenxuan Liu;Qi Wei;Wenxin Huang;Zhaofei Yu;Tiejun Huang
Spiking neural networks (SNNs) have garnered significant attention for their potential in ultralow-power event-driven neuromorphic hardware implementations. One effective strategy for obtaining SNNs involves the conversion of artificial neural networks (ANNs) to SNNs. However, existing research on ANN–SNN conversion has predominantly focused on image classification task, leaving the exploration of action recognition task limited. In this article, we investigate the performance degradation of SNNs on action recognition task. Through in-depth analysis, we propose a framework called scalable dual threshold mapping (SDM) that effectively overcomes three types of conversion errors. By effectively mitigating these conversion errors, we are able to reduce the time required for the spike firing rate of SNNs to align with the activation values of ANNs. Consequently, our method enables the generation of accurate and ultralow-latency SNNs. We conduct extensive evaluations on multiple action recognition datasets, including University of Central Florida (UCF)-101 and Human Motion DataBase (HMDB)-51. Through rigorous experiments and analysis, we demonstrate the effectiveness of our approach. Notably, SDM achieves a remarkable Top-1 accuracy of 92.94% on UCF-101 while requiring ultralow latency (four time steps), highlighting its high performance with reduced computational requirements.
{"title":"Converting Artificial Neural Networks to Ultralow-Latency Spiking Neural Networks for Action Recognition","authors":"Hong You;Xian Zhong;Wenxuan Liu;Qi Wei;Wenxin Huang;Zhaofei Yu;Tiejun Huang","doi":"10.1109/TCDS.2024.3375620","DOIUrl":"10.1109/TCDS.2024.3375620","url":null,"abstract":"Spiking neural networks (SNNs) have garnered significant attention for their potential in ultralow-power event-driven neuromorphic hardware implementations. One effective strategy for obtaining SNNs involves the conversion of artificial neural networks (ANNs) to SNNs. However, existing research on ANN–SNN conversion has predominantly focused on image classification task, leaving the exploration of action recognition task limited. In this article, we investigate the performance degradation of SNNs on action recognition task. Through in-depth analysis, we propose a framework called scalable dual threshold mapping (SDM) that effectively overcomes three types of conversion errors. By effectively mitigating these conversion errors, we are able to reduce the time required for the spike firing rate of SNNs to align with the activation values of ANNs. Consequently, our method enables the generation of accurate and ultralow-latency SNNs. We conduct extensive evaluations on multiple action recognition datasets, including University of Central Florida (UCF)-101 and Human Motion DataBase (HMDB)-51. Through rigorous experiments and analysis, we demonstrate the effectiveness of our approach. Notably, SDM achieves a remarkable Top-1 accuracy of 92.94% on UCF-101 while requiring ultralow latency (four time steps), highlighting its high performance with reduced computational requirements.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1533-1545"},"PeriodicalIF":5.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1109/TCDS.2024.3376433
Siqi Cai;Ran Zhang;Malu Zhang;Jibin Wu;Haizhou Li
Decoding auditory attention from brain activities, such as electroencephalography (EEG), sheds light on solving the machine cocktail party problem. However, effective representation of EEG signals remains a challenge. One of the reasons is that the current feature extraction techniques have not fully exploited the spatial information along the EEG signals. EEG signals reflect the collective dynamics of brain activities across different regions. The intricate interactions among these channels, rather than individual EEG channels alone, reflect the distinctive features of brain activities. In this study, we propose a spiking graph convolutional network (SGCN), which captures the spatial features of multichannel EEG in a biologically plausible manner. Comprehensive experiments were conducted on two publicly available datasets. Results demonstrate that the proposed SGCN achieves competitive auditory attention detection (AAD) performance in low-latency and low-density EEG settings. As it features low power consumption, the SGCN has the potential for practical implementation in intelligent hearing aids and other brain–computer interfaces (BCIs).
{"title":"EEG-Based Auditory Attention Detection With Spiking Graph Convolutional Network","authors":"Siqi Cai;Ran Zhang;Malu Zhang;Jibin Wu;Haizhou Li","doi":"10.1109/TCDS.2024.3376433","DOIUrl":"10.1109/TCDS.2024.3376433","url":null,"abstract":"Decoding auditory attention from brain activities, such as electroencephalography (EEG), sheds light on solving the machine cocktail party problem. However, effective representation of EEG signals remains a challenge. One of the reasons is that the current feature extraction techniques have not fully exploited the spatial information along the EEG signals. EEG signals reflect the collective dynamics of brain activities across different regions. The intricate interactions among these channels, rather than individual EEG channels alone, reflect the distinctive features of brain activities. In this study, we propose a spiking graph convolutional network (SGCN), which captures the spatial features of multichannel EEG in a biologically plausible manner. Comprehensive experiments were conducted on two publicly available datasets. Results demonstrate that the proposed SGCN achieves competitive auditory attention detection (AAD) performance in low-latency and low-density EEG settings. As it features low power consumption, the SGCN has the potential for practical implementation in intelligent hearing aids and other brain–computer interfaces (BCIs).","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 5","pages":"1698-1706"},"PeriodicalIF":5.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1109/TCDS.2024.3371073
Song Peng;Teng Ran;Liang Yuan;Jianbo Zhang;Wendong Xiao
Visual simultaneous localization and mapping (SLAM) in dynamic scenes is a prerequisite for robot-related applications. Most of the existing SLAM algorithms mainly focus on dynamic object rejection, which makes part of the valuable information lost and prone to failure in complex environments. This article proposes a semantic visual SLAM system that incorporates rigid object tracking. A robust scene perception frame is designed, which gives autonomous robots the ability to perceive scenes similar to human cognition. Specifically, we propose a two-stage mask revision method to generate fine mask of the object. Based on the revised mask, we propose a semantic and geometric constraint (SAG) strategy, which provides a fast and robust way to perceive dynamic rigid objects. Then, the motion tracking of rigid objects is integrated into the SLAM pipeline, and a novel bundle adjustment is constructed to optimize camera localization and object six-degree of freedom (DoF) poses. Finally, the evaluation of the proposed algorithm is performed on publicly available KITTI dataset, Oxford Multimotion dataset, and real-world scenarios. The proposed algorithm achieves the comprehensive performance of $text{RPE}_{text{t}}$