首页 > 最新文献

IEEE Transactions on Cognitive and Developmental Systems最新文献

英文 中文
Brain Connectivity Analysis for EEG-Based Face Perception Task 基于脑电图的人脸感知任务的大脑连接性分析
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-27 DOI: 10.1109/TCDS.2024.3370635
Debashis Das Chakladar;Nikhil R. Pal
Face perception is considered a highly developed visual recognition skill in human beings. Most face perception studies used functional magnetic resonance imaging to identify different brain cortices related to face perception. However, studying brain connectivity networks for face perception using electroencephalography (EEG) has not yet been done. In the proposed framework, initially, a correlation-tree traversal-based channel selection algorithm is developed to identify the “optimum” EEG channels by removing the highly correlated EEG channels from the input channel set. Next, the effective brain connectivity network among those “optimum” EEG channels is developed using multivariate transfer entropy (TE) while participants watched different face stimuli (i.e., famous, unfamiliar, and scrambled). We transform EEG channels into corresponding brain regions for generalization purposes and identify the active brain regions for each face stimulus. To find the stimuluswise brain dynamics, the information transfer among the identified brain regions is estimated using several graphical measures [global efficiency (GE) and transitivity]. Our model archives the mean GE of 0.800, 0.695, and 0.581 for famous, unfamiliar, and scrambled faces, respectively. Identifying face perception-specific brain regions will enhance understanding of the EEG-based face-processing system. Understanding the brain networks of famous, unfamiliar, and scrambled faces can be useful in criminal investigation applications.
人脸感知被认为是人类高度发达的视觉识别技能。大多数人脸感知研究都使用功能性磁共振成像来识别与人脸感知相关的不同大脑皮层。然而,利用脑电图(EEG)研究人脸感知的大脑连接网络的工作尚未开展。在提议的框架中,首先开发了一种基于相关树遍历的通道选择算法,通过从输入通道集中剔除高度相关的脑电图通道来识别 "最佳 "脑电图通道。接着,在参与者观看不同的人脸刺激(即著名的、陌生的和乱码的)时,使用多变量转移熵(TE)在这些 "最佳 "脑电图通道中建立有效的大脑连接网络。我们将脑电图通道转换为相应的脑区,以达到概括的目的,并识别出每个人脸刺激的活跃脑区。为了找到刺激时的大脑动态,我们使用几种图形测量方法(全局效率(GE)和传递性)来估算已识别脑区之间的信息传递。我们的模型得出,著名人脸、陌生人脸和乱码人脸的平均 GE 分别为 0.800、0.695 和 0.581。识别人脸感知的特定脑区将加深对基于脑电图的人脸处理系统的理解。了解著名人脸、陌生人脸和乱码人脸的大脑网络有助于刑事调查应用。
{"title":"Brain Connectivity Analysis for EEG-Based Face Perception Task","authors":"Debashis Das Chakladar;Nikhil R. Pal","doi":"10.1109/TCDS.2024.3370635","DOIUrl":"10.1109/TCDS.2024.3370635","url":null,"abstract":"Face perception is considered a highly developed visual recognition skill in human beings. Most face perception studies used functional magnetic resonance imaging to identify different brain cortices related to face perception. However, studying brain connectivity networks for face perception using electroencephalography (EEG) has not yet been done. In the proposed framework, initially, a correlation-tree traversal-based channel selection algorithm is developed to identify the “optimum” EEG channels by removing the highly correlated EEG channels from the input channel set. Next, the effective brain connectivity network among those “optimum” EEG channels is developed using multivariate transfer entropy (TE) while participants watched different face stimuli (i.e., famous, unfamiliar, and scrambled). We transform EEG channels into corresponding brain regions for generalization purposes and identify the active brain regions for each face stimulus. To find the stimuluswise brain dynamics, the information transfer among the identified brain regions is estimated using several graphical measures [global efficiency (GE) and transitivity]. Our model archives the mean GE of 0.800, 0.695, and 0.581 for famous, unfamiliar, and scrambled faces, respectively. Identifying face perception-specific brain regions will enhance understanding of the EEG-based face-processing system. Understanding the brain networks of famous, unfamiliar, and scrambled faces can be useful in criminal investigation applications.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-FaST: Cognitive Signal Decoding With Disentangled Frequency–Spatial–Temporal Attention D-FaST:频率-空间-时间注意力分离的认知信号解码
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-26 DOI: 10.1109/TCDS.2024.3370261
WeiGuo Chen;Changjian Wang;Kele Xu;Yuan Yuan;Yanru Bai;Dongsong Zhang
Cognitive language processing (CLP), situated at the intersection of natural language processing (NLP) and cognitive science, plays a progressively pivotal role in the domains of artificial intelligence, cognitive intelligence, and brain science. Among the essential areas of investigation in CLP, cognitive signal decoding (CSD) has made remarkable achievements, yet there still exist challenges related to insufficient global dynamic representation capability and deficiencies in multidomain feature integration. In this article, we introduce a novel paradigm for CLP referred to as disentangled frequency–spatial–temporal attention (D-FaST). Specifically, we present a novel cognitive signal decoder that operates on disentangled frequency–space–time domain attention. This decoder encompasses three key components: frequency domain feature extraction employing multiview attention (MVA), spatial domain feature extraction utilizing dynamic brain connection graph attention, and temporal feature extraction relying on local time sliding window attention. These components are integrated within a novel disentangled framework. Additionally, to encourage advancements in this field, we have created a new CLP dataset, MNRED. Subsequently, we conducted an extensive series of experiments, evaluating D-FaST's performance on MNRED, as well as on publicly available datasets including ZuCo, BCIC IV-2A, and BCIC IV-2B. Our experimental results demonstrate that D-FaST outperforms existing methods significantly on both our datasets and traditional CSD datasets including establishing a state-of-the-art accuracy score 78.72% on MNRED, pushing the accuracy score on ZuCo to 78.35%, accuracy score on BCIC IV-2A to 74.85%, and accuracy score on BCIC IV-2B to 76.81%.
认知语言处理(CLP)是自然语言处理(NLP)和认知科学的交叉学科,在人工智能、认知智能和脑科学领域发挥着举足轻重的作用。在认知语言处理的重要研究领域中,认知信号解码(CSD)已经取得了令人瞩目的成就,但仍然存在全局动态表征能力不足和多域特征整合方面的缺陷等挑战。在本文中,我们介绍了一种新颖的中长期语言学习范式,即频率-空间-时间分离注意力(D-FaST)。具体来说,我们提出了一种新型认知信号解码器,该解码器可在频率-空间-时间分离域注意力上运行。该解码器包括三个关键部分:采用多视角注意力(MVA)的频域特征提取、利用动态脑连接图注意力的空间域特征提取,以及依靠局部时间滑动窗口注意力的时间特征提取。这些部分被整合到一个新颖的分离框架中。此外,为了鼓励这一领域的进步,我们还创建了一个新的 CLP 数据集 MNRED。随后,我们进行了一系列广泛的实验,评估了 D-FaST 在 MNRED 以及 ZuCo、BCIC IV-2A 和 BCIC IV-2B 等公开数据集上的性能。我们的实验结果表明,D-FaST 在我们的数据集和传统 CSD 数据集上的表现都明显优于现有方法,包括在 MNRED 上获得 78.72% 的最高准确率,将 ZuCo 的准确率推高到 78.35%,将 BCIC IV-2A 的准确率推高到 74.85%,将 BCIC IV-2B 的准确率推高到 76.81%。
{"title":"D-FaST: Cognitive Signal Decoding With Disentangled Frequency–Spatial–Temporal Attention","authors":"WeiGuo Chen;Changjian Wang;Kele Xu;Yuan Yuan;Yanru Bai;Dongsong Zhang","doi":"10.1109/TCDS.2024.3370261","DOIUrl":"10.1109/TCDS.2024.3370261","url":null,"abstract":"Cognitive language processing (CLP), situated at the intersection of natural language processing (NLP) and cognitive science, plays a progressively pivotal role in the domains of artificial intelligence, cognitive intelligence, and brain science. Among the essential areas of investigation in CLP, cognitive signal decoding (CSD) has made remarkable achievements, yet there still exist challenges related to insufficient global dynamic representation capability and deficiencies in multidomain feature integration. In this article, we introduce a novel paradigm for CLP referred to as disentangled frequency–spatial–temporal attention (D-FaST). Specifically, we present a novel cognitive signal decoder that operates on disentangled frequency–space–time domain attention. This decoder encompasses three key components: frequency domain feature extraction employing multiview attention (MVA), spatial domain feature extraction utilizing dynamic brain connection graph attention, and temporal feature extraction relying on local time sliding window attention. These components are integrated within a novel disentangled framework. Additionally, to encourage advancements in this field, we have created a new CLP dataset, MNRED. Subsequently, we conducted an extensive series of experiments, evaluating D-FaST's performance on MNRED, as well as on publicly available datasets including ZuCo, BCIC IV-2A, and BCIC IV-2B. Our experimental results demonstrate that D-FaST outperforms existing methods significantly on both our datasets and traditional CSD datasets including establishing a state-of-the-art accuracy score 78.72% on MNRED, pushing the accuracy score on ZuCo to 78.35%, accuracy score on BCIC IV-2A to 74.85%, and accuracy score on BCIC IV-2B to 76.81%.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139979066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DTCM: Deep Transformer Capsule Mutual Distillation for Multivariate Time Series Classification DTCM:用于多变量时间序列分类的深度变压器胶囊互馏法
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-26 DOI: 10.1109/TCDS.2024.3370219
Zhiwen Xiao;Xin Xu;Huanlai Xing;Bowen Zhao;Xinhan Wang;Fuhong Song;Rong Qu;Li Feng
This article proposes a dual-network-based feature extractor, perceptive capsule network (PCapN), for multivariate time series classification (MTSC), including a local feature network (LFN) and a global relation network (GRN). The LFN has two heads (i.e., Head_A and Head_B), each containing two squash convolutional neural network (CNN) blocks and one dynamic routing block to extract the local features from the data and mine the connections among them. The GRN consists of two capsule-based transformer blocks and one dynamic routing block to capture the global patterns of each variable and correlate the useful information of multiple variables. Unfortunately, it is difficult to directly deploy PCapN on mobile devices due to its strict requirement for computing resources. So, this article designs a lightweight capsule network (LCapN) to mimic the cumbersome PCapN. To promote knowledge transfer from PCapN to LCapN, this article proposes a deep transformer capsule mutual (DTCM) distillation method. It is targeted and offline, using one- and two-way operations to supervise the knowledge distillation (KD) process for the dual-network-based student and teacher models. Experimental results show that the proposed PCapN and DTCM achieve excellent performance on University of East Anglia 2018 (UEA2018) datasets regarding top-1 accuracy.
本文提出了一种基于双网络的特征提取器--感知胶囊网络(PCapN),用于多变量时间序列分类(MTSC),包括局部特征网络(LFN)和全局关系网络(GRN)。LFN 有两个头(即 Head_A 和 Head_B),每个头包含两个挤压卷积神经网络(CNN)块和一个动态路由块,用于从数据中提取局部特征并挖掘它们之间的联系。GRN 由两个基于胶囊的变压器块和一个动态路由块组成,用于捕捉每个变量的全局模式,并将多个变量的有用信息关联起来。遗憾的是,由于 PCapN 对计算资源的严格要求,很难在移动设备上直接部署。因此,本文设计了一种轻量级胶囊网络(LCapN)来模仿笨重的 PCapN。为了促进从 PCapN 到 LCapN 的知识转移,本文提出了一种深变换胶囊互(DTCM)提炼方法。它具有针对性和离线性,使用单向和双向操作来监督基于双网络的学生和教师模型的知识蒸馏(KD)过程。实验结果表明,在东英吉利大学2018(UEA2018)数据集上,所提出的PCapN和DTCM在top-1准确率方面取得了优异的表现。
{"title":"DTCM: Deep Transformer Capsule Mutual Distillation for Multivariate Time Series Classification","authors":"Zhiwen Xiao;Xin Xu;Huanlai Xing;Bowen Zhao;Xinhan Wang;Fuhong Song;Rong Qu;Li Feng","doi":"10.1109/TCDS.2024.3370219","DOIUrl":"10.1109/TCDS.2024.3370219","url":null,"abstract":"This article proposes a dual-network-based feature extractor, perceptive capsule network (PCapN), for multivariate time series classification (MTSC), including a local feature network (LFN) and a global relation network (GRN). The LFN has two heads (i.e., Head_A and Head_B), each containing two squash convolutional neural network (CNN) blocks and one dynamic routing block to extract the local features from the data and mine the connections among them. The GRN consists of two capsule-based transformer blocks and one dynamic routing block to capture the global patterns of each variable and correlate the useful information of multiple variables. Unfortunately, it is difficult to directly deploy PCapN on mobile devices due to its strict requirement for computing resources. So, this article designs a lightweight capsule network (LCapN) to mimic the cumbersome PCapN. To promote knowledge transfer from PCapN to LCapN, this article proposes a deep transformer capsule mutual (DTCM) distillation method. It is targeted and offline, using one- and two-way operations to supervise the knowledge distillation (KD) process for the dual-network-based student and teacher models. Experimental results show that the proposed PCapN and DTCM achieve excellent performance on University of East Anglia 2018 (UEA2018) datasets regarding top-1 accuracy.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139979417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning 同意到不同意:探索部分语义一致性与视觉偏差对组合式零镜头学习的影响
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-20 DOI: 10.1109/TCDS.2024.3367957
Xiangyu Li;Xu Yang;Xi Wang;Cheng Deng
Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.
构图零点学习(CZSL)旨在从已知的子概念中识别新概念。然而,由于子概念之间错综复杂的互动关系与其相应的视觉特征纠缠在一起,影响了概念的识别准确性,因此它仍然具有挑战性。此外,训练数据和测试数据之间的领域差距也会导致模型的泛化能力较差。本文针对这些问题,通过探索部分语义一致性(PSC)来消除视觉偏差,从而保证表征的识别和泛化。考虑到子概念与其视觉特征之间复杂的相互作用,我们根据标签将所见的图像分解为视觉元素,并从合成中获得实例级的子偏差,从而挖掘出子概念的类别级基元。此外,我们还提出了一种多尺度概念合成(MSCC)方法,从两个方面生成虚拟样本,从而提高样本的充足性和多样性,使所提出的模型能够泛化到新的合成中。广泛的实验表明,在三个基准数据集上,我们的方法明显优于最先进的方法。
{"title":"Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning","authors":"Xiangyu Li;Xu Yang;Xi Wang;Cheng Deng","doi":"10.1109/TCDS.2024.3367957","DOIUrl":"10.1109/TCDS.2024.3367957","url":null,"abstract":"Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressed Video Anomaly Detection of Human Behavior Based on Abnormal Region Determination 基于异常区域判定的人类行为压缩视频异常检测
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-20 DOI: 10.1109/TCDS.2024.3367493
Lijun He;Miao Zhang;Hao Liu;Liejun Wang;Fan Li
Video anomaly detection has a wide range of applications in video monitoring-related scenarios. The existing image-domain-based anomaly detection algorithms usually require completely decoding the received videos, complex information extraction, and network structure, which makes them difficult to be implemented directly. In this article, we focus on anomaly detection directly for compressed videos. The compressed videos need not be fully decoded and auxiliary information can be obtained directly, which have low computational complexity. We propose a compressed video anomaly detection algorithm based on accurate abnormal region determination (ARD-VAD), which is suitable to be deployed on edge servers. First, to ensure the overall low complexity and save storage space, we sparsely sample the prior knowledge of I-frame representing the appearance information and motion vector (MV) representing the motion information from compressed videos. Based on the sampled information, a two-branch network structure, which consists of MV reconstruction branch and future I-frame prediction branch, is designed. Specifically, the two branches are connected by an attention network based on the MV residuals to guide the prediction network to focus on the abnormal regions. Furthermore, to emphasize the abnormal regions, we develop an adaptive sensing of abnormal regions determination module based on motion intensity represented by the second derivative of MV. This module can enhance the difference of the real anomaly region between the generated frame and the current frame. The experiments show that our algorithm can achieve a good balance between performance and complexity.
视频异常检测在视频监控相关场景中有着广泛的应用。现有的基于图像域的异常检测算法通常需要对接收到的视频进行完全解码、复杂的信息提取和网络结构,因此难以直接实现。在本文中,我们将重点关注直接针对压缩视频的异常检测。压缩视频无需完全解码,可直接获取辅助信息,计算复杂度低。我们提出了一种基于精确异常区域判定(ARD-VAD)的压缩视频异常检测算法,适合部署在边缘服务器上。首先,为了确保整体的低复杂度并节省存储空间,我们对压缩视频中代表外观信息的 I 帧和代表运动信息的运动矢量(MV)的先验知识进行稀疏采样。根据采样信息,我们设计了一个由 MV 重建分支和未来 I 帧预测分支组成的双分支网络结构。具体来说,这两个分支由一个基于 MV 残差的注意力网络连接,以引导预测网络关注异常区域。此外,为了突出异常区域,我们开发了一个基于 MV 二次导数所代表的运动强度的自适应异常区域感知确定模块。该模块可以增强生成帧与当前帧之间真实异常区域的差异。实验表明,我们的算法可以在性能和复杂性之间取得良好的平衡。
{"title":"Compressed Video Anomaly Detection of Human Behavior Based on Abnormal Region Determination","authors":"Lijun He;Miao Zhang;Hao Liu;Liejun Wang;Fan Li","doi":"10.1109/TCDS.2024.3367493","DOIUrl":"10.1109/TCDS.2024.3367493","url":null,"abstract":"Video anomaly detection has a wide range of applications in video monitoring-related scenarios. The existing image-domain-based anomaly detection algorithms usually require completely decoding the received videos, complex information extraction, and network structure, which makes them difficult to be implemented directly. In this article, we focus on anomaly detection directly for compressed videos. The compressed videos need not be fully decoded and auxiliary information can be obtained directly, which have low computational complexity. We propose a compressed video anomaly detection algorithm based on accurate abnormal region determination (ARD-VAD), which is suitable to be deployed on edge servers. First, to ensure the overall low complexity and save storage space, we sparsely sample the prior knowledge of I-frame representing the appearance information and motion vector (MV) representing the motion information from compressed videos. Based on the sampled information, a two-branch network structure, which consists of MV reconstruction branch and future I-frame prediction branch, is designed. Specifically, the two branches are connected by an attention network based on the MV residuals to guide the prediction network to focus on the abnormal regions. Furthermore, to emphasize the abnormal regions, we develop an adaptive sensing of abnormal regions determination module based on motion intensity represented by the second derivative of MV. This module can enhance the difference of the real anomaly region between the generated frame and the current frame. The experiments show that our algorithm can achieve a good balance between performance and complexity.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning 利用多批判 TD3 进行深度强化学习,实现分散式多机器人路径规划
IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-02-20 DOI: 10.1109/TCDS.2024.3368055
Heqing Yin;Chang Wang;Chao Yan;Xiaojia Xiang;Boliang Cai;Changyun Wei
Centralized multirobot path planning is a prevalent approach involving a global planner computing feasible paths for each robot using shared information. Nonetheless, this approach encounters limitations due to communication constraints and computational complexity. To address these challenges, we introduce a novel decentralized multirobot path planning approach that eliminates the need for sharing the states and intentions of robots. Our approach harnesses deep reinforcement learning and features an asynchronous multicritic twin delayed deep deterministic policy gradient (AMC-TD3) algorithm, which enhances the original gate recurrent unit (GRU)-attention-based TD3 algorithm by incorporating a multicritic network and employing an asynchronous training mechanism. By training each critic with a unique reward function, our learned policy enables each robot to navigate toward its long-term objective without colliding with other robots in complex environments. Furthermore, our reward function, grounded in social norms, allows the robots to naturally avoid each other in congested situations. Specifically, we train three critics to encourage each robot to achieve its long-term navigation goal, maintain its moving direction, and prevent collisions with other robots. Our model can learn an end-to-end navigation policy without relying on an accurate map or any localization information, rendering it highly adaptable to various environments. Simulation results reveal that our proposed approach surpasses baselines in several environments with different levels of complexity and robot populations.
集中式多机器人路径规划是一种普遍的方法,涉及一个全局规划器,利用共享信息为每个机器人计算可行路径。然而,这种方法受到通信限制和计算复杂性的制约。为了应对这些挑战,我们引入了一种新颖的分散式多机器人路径规划方法,无需共享机器人的状态和意图。我们的方法利用深度强化学习,采用异步多批判孪生延迟深度确定性策略梯度(AMC-TD3)算法,通过纳入多批判网络和采用异步训练机制,增强了原有的基于门递归单元(GRU)-注意力的 TD3 算法。通过用独特的奖励函数训练每个批判者,我们学习到的策略能让每个机器人在复杂环境中朝着自己的长期目标航行,而不会与其他机器人发生碰撞。此外,我们的奖励函数以社会规范为基础,能让机器人在拥挤的情况下自然地避开对方。具体来说,我们训练了三个批评者来鼓励每个机器人实现其长期导航目标,保持其移动方向,并防止与其他机器人发生碰撞。我们的模型可以学习端到端的导航策略,而无需依赖精确的地图或任何定位信息,因此能高度适应各种环境。仿真结果表明,我们提出的方法在具有不同复杂程度和机器人数量的若干环境中超越了基线方法。
{"title":"Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning","authors":"Heqing Yin;Chang Wang;Chao Yan;Xiaojia Xiang;Boliang Cai;Changyun Wei","doi":"10.1109/TCDS.2024.3368055","DOIUrl":"10.1109/TCDS.2024.3368055","url":null,"abstract":"Centralized multirobot path planning is a prevalent approach involving a global planner computing feasible paths for each robot using shared information. Nonetheless, this approach encounters limitations due to communication constraints and computational complexity. To address these challenges, we introduce a novel decentralized multirobot path planning approach that eliminates the need for sharing the states and intentions of robots. Our approach harnesses deep reinforcement learning and features an asynchronous multicritic twin delayed deep deterministic policy gradient (AMC-TD3) algorithm, which enhances the original gate recurrent unit (GRU)-attention-based TD3 algorithm by incorporating a multicritic network and employing an asynchronous training mechanism. By training each critic with a unique reward function, our learned policy enables each robot to navigate toward its long-term objective without colliding with other robots in complex environments. Furthermore, our reward function, grounded in social norms, allows the robots to naturally avoid each other in congested situations. Specifically, we train three critics to encourage each robot to achieve its long-term navigation goal, maintain its moving direction, and prevent collisions with other robots. Our model can learn an end-to-end navigation policy without relying on an accurate map or any localization information, rendering it highly adaptable to various environments. Simulation results reveal that our proposed approach surpasses baselines in several environments with different levels of complexity and robot populations.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial IEEE Transactions on Cognitive and Developmental Systems 编辑 IEEE《认知与发展系统》杂志
IF 5 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-02 DOI: 10.1109/TCDS.2024.3353515
Huajin Tang
As we usher into the new year of 2024, in my capacity as the Editor-in-Chief of the IEEE Transactions on Cognitive and Developmental Systems (TCDS), I am happy to extend to you a tapestry of New Year greetings, may this year be filled with prosperity, success, and groundbreaking achievements in our shared fields.
在我们迎来 2024 年新的一年之际,作为《电气和电子工程师学会认知与发育系统论文集》(TCDS)的主编,我很高兴向您致以新年的问候,愿这一年充满繁荣、成功,以及我们在共同领域取得的突破性成就。
{"title":"Editorial IEEE Transactions on Cognitive and Developmental Systems","authors":"Huajin Tang","doi":"10.1109/TCDS.2024.3353515","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3353515","url":null,"abstract":"As we usher into the new year of 2024, in my capacity as the Editor-in-Chief of the IEEE Transactions on Cognitive and Developmental Systems (TCDS), I am happy to extend to you a tapestry of New Year greetings, may this year be filled with prosperity, success, and groundbreaking achievements in our shared fields.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Issue on Cognitive Learning of Multiagent Systems 客座编辑特刊:多代理系统的认知学习
IF 5 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-02 DOI: 10.1109/TCDS.2023.3325505
Yang Tang;Wei Lin;Chenguang Yang;Nicola Gatti;Gary G. Yen
The development and cognition of biological and intelligent individuals shed light on the development of cognitive, autonomous, and evolutionary robotics. Take the collective behavior of birds as an example, each individual effectively communicates information and learns from multiple neighbors, facilitating cooperative decision making among them. These interactions among individuals illuminate the growth and cognition of natural groups throughout the evolutionary process, and they can be effectively modeled as multiagent systems. Multiagent systems have the ability to solve problems that are difficult or impossible for an individual agent or a monolithic system to solve, which also improves the robustness and efficiency through collaborative learning. Multiagent learning is playing an increasingly important role in various fields, such as aerospace systems, intelligent transportation, smart grids, etc. With the environment growing increasingly intricate, characterized by factors, such as high dynamism and incomplete/imperfect observational data, the challenges associated with various tasks are escalating. These challenges encompass issues like information sharing, the definition of learning objectives, and grappling with the curse of dimensionality. Unfortunately, many of the existing methods are struggling to effectively address these multifaceted issues in the realm of cognitive intelligence. Furthermore, the field of cognitive learning in multiagent systems underscores the efficiency of distributed learning, demonstrating the capacity to acquire the skill of learning itself collectively. In light of this, multiagent learning, while holding substantial research significance, confronts a spectrum of learning problems that span from single to multiple agents, simplicity to complexity, low dimensionality to high dimensionality, and one domain to various other domains. Agents autonomously and rapidly make swarm intelligent decisions through cognitive learning overcoming the above challenges, which holds significant importance for the advancement of various practical fields.
生物和智能个体的发展和认知为认知、自主和进化机器人的发展提供了启示。以鸟类的集体行为为例,每个个体都能有效地沟通信息,并从多个邻居身上学习,从而促进它们之间的合作决策。这些个体间的互动揭示了自然群体在整个进化过程中的成长和认知过程,它们可以被有效地模拟为多代理系统。多代理系统有能力解决单个代理或单体系统难以解决或无法解决的问题,还能通过协作学习提高鲁棒性和效率。多代理学习在航空航天系统、智能交通、智能电网等各个领域发挥着越来越重要的作用。随着环境日益错综复杂,加上高动态性和不完整/不完美观测数据等因素,与各种任务相关的挑战也在不断升级。这些挑战包括信息共享、学习目标的定义以及应对维度诅咒等问题。遗憾的是,在认知智能领域,许多现有方法都难以有效解决这些多方面的问题。此外,多代理系统中的认知学习领域强调了分布式学习的效率,展示了集体学习自身技能的能力。有鉴于此,多代理学习在具有重大研究意义的同时,也面临着从单代理到多代理、从简单到复杂、从低维到高维、从一个领域到其他各种领域的一系列学习问题。代理通过认知学习自主、快速地做出群智能决策,克服了上述挑战,这对推动各实用领域的发展具有重要意义。
{"title":"Guest Editorial Special Issue on Cognitive Learning of Multiagent Systems","authors":"Yang Tang;Wei Lin;Chenguang Yang;Nicola Gatti;Gary G. Yen","doi":"10.1109/TCDS.2023.3325505","DOIUrl":"https://doi.org/10.1109/TCDS.2023.3325505","url":null,"abstract":"The development and cognition of biological and intelligent individuals shed light on the development of cognitive, autonomous, and evolutionary robotics. Take the collective behavior of birds as an example, each individual effectively communicates information and learns from multiple neighbors, facilitating cooperative decision making among them. These interactions among individuals illuminate the growth and cognition of natural groups throughout the evolutionary process, and they can be effectively modeled as multiagent systems. Multiagent systems have the ability to solve problems that are difficult or impossible for an individual agent or a monolithic system to solve, which also improves the robustness and efficiency through collaborative learning. Multiagent learning is playing an increasingly important role in various fields, such as aerospace systems, intelligent transportation, smart grids, etc. With the environment growing increasingly intricate, characterized by factors, such as high dynamism and incomplete/imperfect observational data, the challenges associated with various tasks are escalating. These challenges encompass issues like information sharing, the definition of learning objectives, and grappling with the curse of dimensionality. Unfortunately, many of the existing methods are struggling to effectively address these multifaceted issues in the realm of cognitive intelligence. Furthermore, the field of cognitive learning in multiagent systems underscores the efficiency of distributed learning, demonstrating the capacity to acquire the skill of learning itself collectively. In light of this, multiagent learning, while holding substantial research significance, confronts a spectrum of learning problems that span from single to multiple agents, simplicity to complexity, low dimensionality to high dimensionality, and one domain to various other domains. Agents autonomously and rapidly make swarm intelligent decisions through cognitive learning overcoming the above challenges, which holds significant importance for the advancement of various practical fields.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computational Intelligence Society 电气和电子工程师学会计算智能学会
IF 5 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-02 DOI: 10.1109/TCDS.2024.3352773
{"title":"IEEE Computational Intelligence Society","authors":"","doi":"10.1109/TCDS.2024.3352773","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3352773","url":null,"abstract":"","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Cognitive and Developmental Systems Publication Information 电气和电子工程师学会认知与发展系统论文集》出版信息
IF 5 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-02 DOI: 10.1109/TCDS.2024.3352771
{"title":"IEEE Transactions on Cognitive and Developmental Systems Publication Information","authors":"","doi":"10.1109/TCDS.2024.3352771","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3352771","url":null,"abstract":"","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Cognitive and Developmental Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1