Pub Date : 2024-03-07DOI: 10.1109/TCDS.2024.3397684
Guang Han;Chenwei Guo;Ziyang Li;Haitao Zhao
Due to the large number of small objects, significant scale variation, and uneven distribution in images captured by unmanned aerial vehicles (UAVs), existing algorithms have high rates of missing and false detections of small objects in drone images. A new object detection algorithm based on microscale perception and enhancement-location feature pyramid is proposed in this article. The microscale perception module alternatives the original convolution module in backbone, changing the receptive field through two dilation branches with various dilation rates and an adjustment switch branch. To better match the size and shape of sampled targets, the weighted deformable convolution is employed. The enhancement-location feature pyramid module aggregates the features from each layer to obtain balanced semantic information and refines aggregated features to enhance their ability to represent features. Moreover, a bottom-up branch structure is added to utilize the property of lower layer features being beneficial to locating small objects to enhance the localization ability for small objects. Additionally, by using specific image cropping and combining techniques, the target distribution of the training data is altered to make the model more sensitive to small objects and improving its robustness. Finally, a sample balance strategy is used in combination with focal loss and a sample extraction control method to balance simple hard sample imbalance and the long-tail distribution of interclass sample imbalance during training. Experimental results show that the proposed algorithm achieves a mean average precision of 35.9% on the VisDrone2019 dataset, which is a 14.2% improvement over the baseline Cascade RCNN and demonstrates better performance in detecting small objects in drone images. Compared with advanced algorithms in recent years, it also achieves state-of-the-art detection accuracy.
{"title":"Small Object Detection Based on Microscale Perception and Enhancement-Location Feature Pyramid","authors":"Guang Han;Chenwei Guo;Ziyang Li;Haitao Zhao","doi":"10.1109/TCDS.2024.3397684","DOIUrl":"10.1109/TCDS.2024.3397684","url":null,"abstract":"Due to the large number of small objects, significant scale variation, and uneven distribution in images captured by unmanned aerial vehicles (UAVs), existing algorithms have high rates of missing and false detections of small objects in drone images. A new object detection algorithm based on microscale perception and enhancement-location feature pyramid is proposed in this article. The microscale perception module alternatives the original convolution module in backbone, changing the receptive field through two dilation branches with various dilation rates and an adjustment switch branch. To better match the size and shape of sampled targets, the weighted deformable convolution is employed. The enhancement-location feature pyramid module aggregates the features from each layer to obtain balanced semantic information and refines aggregated features to enhance their ability to represent features. Moreover, a bottom-up branch structure is added to utilize the property of lower layer features being beneficial to locating small objects to enhance the localization ability for small objects. Additionally, by using specific image cropping and combining techniques, the target distribution of the training data is altered to make the model more sensitive to small objects and improving its robustness. Finally, a sample balance strategy is used in combination with focal loss and a sample extraction control method to balance simple hard sample imbalance and the long-tail distribution of interclass sample imbalance during training. Experimental results show that the proposed algorithm achieves a mean average precision of 35.9% on the VisDrone2019 dataset, which is a 14.2% improvement over the baseline Cascade RCNN and demonstrates better performance in detecting small objects in drone images. Compared with advanced algorithms in recent years, it also achieves state-of-the-art detection accuracy.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"1982-1996"},"PeriodicalIF":5.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1109/TCDS.2024.3396431
Nitin Rathi;Kaushik Roy
Spiking neural networks (SNNs) are gaining popularity for their promise of low-power machine intelligence on event-driven neuromorphic hardware. SNNs have achieved comparable performance as artificial neural networks (ANNs) on static tasks (image classification) with lower compute energy. In this work, we explore the inherent dynamics of SNNs for sequential tasks such as gesture recognition, sentiment analysis, and sequence-to-sequence learning on data from dynamic vision sensors (DVSs) and natural language processing (NLP). Sequential data are generally processed with complex recurrent neural networks (RNNs) [long short-term memory/gated recurrent unit (LSTM/GRU)] with explicit feedback connections and internal states to handle the long-term dependencies. The neuron models in SNNs—integrate-and-fire (IF) or leaky-integrate-and-fire (LIF)—have internal states (membrane potential) that can be efficiently leveraged for sequential tasks. The membrane potential in the IF/LIF neuron integrates the incoming current and outputs an event (or spike) when the potential crosses a threshold value. Since SNNs compute with highly sparse spike-based spatiotemporal data, the energy/inference is lower than LSTMs/GRUs. We also show that SNNs require fewer parameters than LSTM/GRU resulting in smaller models and faster inference. We observe the problem of vanishing gradients in vanilla SNNs for longer sequences and implement a convolutional SNN with attention layers to perform sequence-to-sequence learning tasks. The inherent recurrence in SNNs, in addition to the fully parallelized convolutional operations, provide additional mechanisms to model sequential dependencies that lead to better accuracy than convolutional neural networks (CNNs) with ReLU activations. We evaluate SNN on gesture recognition from the IBM DVS dataset, sentiment analysis from the IMDB movie reviews dataset, and German-to-English translation from the Multi30k dataset.
{"title":"LITE-SNN: Leveraging Inherent Dynamics to Train Energy-Efficient Spiking Neural Networks for Sequential Learning","authors":"Nitin Rathi;Kaushik Roy","doi":"10.1109/TCDS.2024.3396431","DOIUrl":"10.1109/TCDS.2024.3396431","url":null,"abstract":"Spiking neural networks (SNNs) are gaining popularity for their promise of low-power machine intelligence on event-driven neuromorphic hardware. SNNs have achieved comparable performance as artificial neural networks (ANNs) on static tasks (image classification) with lower compute energy. In this work, we explore the inherent dynamics of SNNs for sequential tasks such as gesture recognition, sentiment analysis, and sequence-to-sequence learning on data from dynamic vision sensors (DVSs) and natural language processing (NLP). Sequential data are generally processed with complex recurrent neural networks (RNNs) [long short-term memory/gated recurrent unit (LSTM/GRU)] with explicit feedback connections and internal states to handle the long-term dependencies. The neuron models in SNNs—integrate-and-fire (IF) or leaky-integrate-and-fire (LIF)—have internal states (membrane potential) that can be efficiently leveraged for sequential tasks. The membrane potential in the IF/LIF neuron integrates the incoming current and outputs an event (or spike) when the potential crosses a threshold value. Since SNNs compute with highly sparse spike-based spatiotemporal data, the energy/inference is lower than LSTMs/GRUs. We also show that SNNs require fewer parameters than LSTM/GRU resulting in smaller models and faster inference. We observe the problem of vanishing gradients in vanilla SNNs for longer sequences and implement a convolutional SNN with attention layers to perform sequence-to-sequence learning tasks. The inherent recurrence in SNNs, in addition to the fully parallelized convolutional operations, provide additional mechanisms to model sequential dependencies that lead to better accuracy than convolutional neural networks (CNNs) with ReLU activations. We evaluate SNN on gesture recognition from the IBM DVS dataset, sentiment analysis from the IMDB movie reviews dataset, and German-to-English translation from the Multi30k dataset.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"1905-1914"},"PeriodicalIF":5.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, companies and organizations have been required to provide individuals with the right to be forgotten to alleviate privacy concerns. In machine learning, this requires researchers not only to delete data from databases but also to remove data information from trained models. Thus, machine unlearning is becoming an emerging research problem. In seizure prediction field, prediction applications are established most on private electroencephalogram (EEG) signals. To provide the right to be forgotten, we propose a machine unlearning method for seizure prediction. Our proposed unlearning method is based on knowledge distillation using two teacher models to guide the student model toward achieving model-level unlearning objective. One teacher model is used to induce the student model to forget data information of patients with unlearning request (forgetting patients), while the other teacher model is used to enable the student model to retain data information of other patients (remaining patients). Experiments were conducted on CHBMIT and Kaggle databases. Results show that our proposed unlearning method can effectively make trained ML models forget the information of forgetting patients and maintain satisfactory performance on remaining patients. To the best of our knowledge, it is the first work of machine unlearning in seizure prediction field.
{"title":"Machine Unlearning for Seizure Prediction","authors":"Chenghao Shao;Chang Li;Rencheng Song;Xiang Liu;Ruobing Qian;Xun Chen","doi":"10.1109/TCDS.2024.3395663","DOIUrl":"10.1109/TCDS.2024.3395663","url":null,"abstract":"In recent years, companies and organizations have been required to provide individuals with the right to be forgotten to alleviate privacy concerns. In machine learning, this requires researchers not only to delete data from databases but also to remove data information from trained models. Thus, machine unlearning is becoming an emerging research problem. In seizure prediction field, prediction applications are established most on private electroencephalogram (EEG) signals. To provide the right to be forgotten, we propose a machine unlearning method for seizure prediction. Our proposed unlearning method is based on knowledge distillation using two teacher models to guide the student model toward achieving model-level unlearning objective. One teacher model is used to induce the student model to forget data information of patients with unlearning request (forgetting patients), while the other teacher model is used to enable the student model to retain data information of other patients (remaining patients). Experiments were conducted on CHBMIT and Kaggle databases. Results show that our proposed unlearning method can effectively make trained ML models forget the information of forgetting patients and maintain satisfactory performance on remaining patients. To the best of our knowledge, it is the first work of machine unlearning in seizure prediction field.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"1969-1981"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1109/TCDS.2024.3371073
Song Peng;Teng Ran;Liang Yuan;Jianbo Zhang;Wendong Xiao
Visual simultaneous localization and mapping (SLAM) in dynamic scenes is a prerequisite for robot-related applications. Most of the existing SLAM algorithms mainly focus on dynamic object rejection, which makes part of the valuable information lost and prone to failure in complex environments. This article proposes a semantic visual SLAM system that incorporates rigid object tracking. A robust scene perception frame is designed, which gives autonomous robots the ability to perceive scenes similar to human cognition. Specifically, we propose a two-stage mask revision method to generate fine mask of the object. Based on the revised mask, we propose a semantic and geometric constraint (SAG) strategy, which provides a fast and robust way to perceive dynamic rigid objects. Then, the motion tracking of rigid objects is integrated into the SLAM pipeline, and a novel bundle adjustment is constructed to optimize camera localization and object six-degree of freedom (DoF) poses. Finally, the evaluation of the proposed algorithm is performed on publicly available KITTI dataset, Oxford Multimotion dataset, and real-world scenarios. The proposed algorithm achieves the comprehensive performance of $text{RPE}_{text{t}}$