Pub Date : 2024-09-01Epub Date: 2024-02-06DOI: 10.1117/1.NPh.11.S1.S11503
Peisheng Ding, Hannes Wahn, Fu-Der Chen, Jianfeng Li, Xin Mu, Andrei Stalmashonak, Xianshu Luo, Guo-Qiang Lo, Joyce K S Poon, Wesley D Sacher
Significance: Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to in vivo brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging.
Aim: Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue.
Approach: Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue.
Results: Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle.
Conclusions: Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging in vivo.
{"title":"Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging.","authors":"Peisheng Ding, Hannes Wahn, Fu-Der Chen, Jianfeng Li, Xin Mu, Andrei Stalmashonak, Xianshu Luo, Guo-Qiang Lo, Joyce K S Poon, Wesley D Sacher","doi":"10.1117/1.NPh.11.S1.S11503","DOIUrl":"10.1117/1.NPh.11.S1.S11503","url":null,"abstract":"<p><strong>Significance: </strong>Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to <i>in vivo</i> brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging.</p><p><strong>Aim: </strong>Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue.</p><p><strong>Approach: </strong>Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue.</p><p><strong>Results: </strong>Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle.</p><p><strong>Conclusions: </strong>Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging <i>in vivo</i>.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11503"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-22DOI: 10.1117/1.NPh.11.S1.S11507
Anna Karpova, Ahmed A A Aly, Endre Levente Marosi, Sanja Mikulovic
In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.
{"title":"Fiber-based <i>in vivo</i> imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior.","authors":"Anna Karpova, Ahmed A A Aly, Endre Levente Marosi, Sanja Mikulovic","doi":"10.1117/1.NPh.11.S1.S11507","DOIUrl":"10.1117/1.NPh.11.S1.S11507","url":null,"abstract":"<p><p>In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of <i>in vivo</i> cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11507"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SignificanceRapid acquisition of large imaging volumes with microscopic resolution is an essential unmet need in biological research, especially for monitoring rapid dynamical processes such as fast activity in distributed neural systems.AimWe present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures.ApproachOur multifocal microscopy approach leverages diffraction to image multiple focal depths simultaneously. It is based on a custom-designed diffractive optical element suited to low magnification and large FOV applications and customized prisms for chromatic correction, allowing for wide bandwidth fluorescence imaging. We integrate this system within a conventional microscope and demonstrate that our design can be used flexibly with a variety of magnification/numerical aperture (NA) objectives.ResultsWe first experimentally and numerically validate this system for large FOV microscope imaging (three orders-of-magnitude larger volumes than previously shown) at resolutions compatible with cellular imaging. We then demonstrate the utility of this approach by visualizing high resolution three-dimensional (3D) distributed neural network at volume rates up to 100 Hz. These demonstrations use genetically encoded Ca2+ indicators to measure functional neural imaging both in vitro and in vivo. Finally, we explore its potential in other important applications, including blood flow visualization and real-time, microscopic, volumetric rendering.ConclusionsOur study demonstrates the advantage of diffraction-based multifocal imaging techniques for 3D imaging of mm-scale objects from a single-camera exposure, with important applications in functional neural imaging and other areas benefiting from volumetric imaging.
意义快速获取具有显微分辨率的大体积成像是生物研究中尚未满足的基本需求,尤其是在监测快速动态过程(如分布式神经系统中的快速活动)方面。AimWe present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures.Approach我们的多焦显微镜方法利用衍射同时对多个焦深进行成像。它基于适合低倍率和大视场应用的定制设计衍射光学元件以及用于色度校正的定制棱镜,从而实现宽带荧光成像。我们将这一系统集成到传统显微镜中,并证明我们的设计可以灵活地与各种放大倍率/数值孔径(NA)物镜配合使用。结果我们首先通过实验和数值验证了这一系统可用于大视野显微镜成像(体积比以前显示的大三个数量级),分辨率与细胞成像兼容。然后,我们以高达 100 Hz 的容积率对高分辨率三维分布式神经网络进行可视化,从而证明了这种方法的实用性。这些演示使用基因编码的 Ca2+ 指示器来测量体外和体内的功能神经成像。最后,我们探讨了它在其他重要应用中的潜力,包括血流可视化和实时、微观、体积渲染。结论我们的研究证明了基于衍射的多焦成像技术在单相机曝光的毫米级物体三维成像中的优势,它在功能神经成像和其他受益于体积成像的领域有着重要的应用。
{"title":"Multifocal microscopy for functional imaging of neural systems","authors":"Nizan Meitav, Inbar Brosh, Limor Freifeld, Shy Shoham","doi":"10.1117/1.nph.11.s1.s11515","DOIUrl":"https://doi.org/10.1117/1.nph.11.s1.s11515","url":null,"abstract":"SignificanceRapid acquisition of large imaging volumes with microscopic resolution is an essential unmet need in biological research, especially for monitoring rapid dynamical processes such as fast activity in distributed neural systems.AimWe present a multifocal strategy for fast, volumetric, diffraction-limited resolution imaging over relatively large and scalable fields of view (FOV) using single-camera exposures.ApproachOur multifocal microscopy approach leverages diffraction to image multiple focal depths simultaneously. It is based on a custom-designed diffractive optical element suited to low magnification and large FOV applications and customized prisms for chromatic correction, allowing for wide bandwidth fluorescence imaging. We integrate this system within a conventional microscope and demonstrate that our design can be used flexibly with a variety of magnification/numerical aperture (NA) objectives.ResultsWe first experimentally and numerically validate this system for large FOV microscope imaging (three orders-of-magnitude larger volumes than previously shown) at resolutions compatible with cellular imaging. We then demonstrate the utility of this approach by visualizing high resolution three-dimensional (3D) distributed neural network at volume rates up to 100 Hz. These demonstrations use genetically encoded Ca2+ indicators to measure functional neural imaging both in vitro and in vivo. Finally, we explore its potential in other important applications, including blood flow visualization and real-time, microscopic, volumetric rendering.ConclusionsOur study demonstrates the advantage of diffraction-based multifocal imaging techniques for 3D imaging of mm-scale objects from a single-camera exposure, with important applications in functional neural imaging and other areas benefiting from volumetric imaging.","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"7 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-08DOI: 10.1117/1.NPh.11.S1.S11513
Filippo Pisano, Liam Collard, Di Zheng, Muhammad Fayyaz Kashif, Mohammadrahim Kazemzadeh, Antonio Balena, Linda Piscopo, Maria Samuela Andriani, Massimo De Vittorio, Ferruccio Pisanello
Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.
{"title":"Potential of plasmonics and nanoscale light-matter interactions for the next generation of optical neural interfaces.","authors":"Filippo Pisano, Liam Collard, Di Zheng, Muhammad Fayyaz Kashif, Mohammadrahim Kazemzadeh, Antonio Balena, Linda Piscopo, Maria Samuela Andriani, Massimo De Vittorio, Ferruccio Pisanello","doi":"10.1117/1.NPh.11.S1.S11513","DOIUrl":"10.1117/1.NPh.11.S1.S11513","url":null,"abstract":"<p><p>Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11513"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-13DOI: 10.1117/1.NPh.11.S1.S11506
Yang Du, Evelyn Dylda, Miroslav Stibůrek, André D Gomes, Sergey Turtaev, Janelle M P Pakan, Tomáš Čižmár
Significance: Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations.
Aim: We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice.
Approach: We used our previously developed multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of with hexagonally arranged corelets.
Results: We successfully utilized the to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the with larger numerical aperture (NA) fibers in fixed whole-brain tissue.
Conclusions: This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.
{"title":"Advancing the path to <i>in-vivo</i> imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy.","authors":"Yang Du, Evelyn Dylda, Miroslav Stibůrek, André D Gomes, Sergey Turtaev, Janelle M P Pakan, Tomáš Čižmár","doi":"10.1117/1.NPh.11.S1.S11506","DOIUrl":"10.1117/1.NPh.11.S1.S11506","url":null,"abstract":"<p><strong>Significance: </strong>Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during <i>in-vivo</i> deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations.</p><p><strong>Aim: </strong>We propose a fiber solution for challenging <i>in-vivo</i> applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice.</p><p><strong>Approach: </strong>We used our previously developed <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> has been specifically designed for use in the initial phase of an <i>in-vivo</i> experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> with hexagonally arranged corelets.</p><p><strong>Results: </strong>We successfully utilized the <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> with larger numerical aperture (NA) fibers in fixed whole-brain tissue.</p><p><strong>Conclusions: </strong>This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for <i>in-vivo</i> applications. We suggest that the upcoming version of the <math><mrow><msup><mi>M</mi><mn>3</mn></msup><mi>CF</mi></mrow></math> increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11506"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1117/1.nph.11.s1.s11501
Hana Uhlířová, Tomáš Čižmár, Janelle M. P. Pakan, André Gomes
The editorial introduces the Neurophotonics Special Issue “Complex Media NeuroPhotonics,” highlighting featured articles.
社论介绍了神经光子学特刊 "复杂介质神经光子学",重点介绍了特约文章。
{"title":"Special Section Guest Editorial: Exploiting Complex Media Photonics to Illuminate Brain’s Hidden Depth","authors":"Hana Uhlířová, Tomáš Čižmár, Janelle M. P. Pakan, André Gomes","doi":"10.1117/1.nph.11.s1.s11501","DOIUrl":"https://doi.org/10.1117/1.nph.11.s1.s11501","url":null,"abstract":"The editorial introduces the Neurophotonics Special Issue “Complex Media NeuroPhotonics,” highlighting featured articles.","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"17 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-09DOI: 10.1117/1.NPh.11.S1.S11514
Mohammad Mohammadiaria, Marco Bianco, Antonio Balena, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnola, Filippo Pisano, Ferruccio Pisanello, Massimo De Vittorio
The continuous exchange between the neuroscience and neuroengineering communities that took place over the past decades has uncovered a multitude of technological solutions to interface with the brain. In this framework, a fascinating approach relies on the integration of multiple activation and monitoring capabilities in the same implantable neural probe to better study the multifaceted nature of neural signaling and related functions in the deep brain regions. We highlight current challenges and perspectives on technological developments that could potentially enable the integration of multiple functionalities on optical fiber-based non-planar implantable neurophotonics probes.
{"title":"Emerging technologies toward the integration of multiple functionalities on non-planar implantable neurophotonics probes.","authors":"Mohammad Mohammadiaria, Marco Bianco, Antonio Balena, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnola, Filippo Pisano, Ferruccio Pisanello, Massimo De Vittorio","doi":"10.1117/1.NPh.11.S1.S11514","DOIUrl":"10.1117/1.NPh.11.S1.S11514","url":null,"abstract":"<p><p>The continuous exchange between the neuroscience and neuroengineering communities that took place over the past decades has uncovered a multitude of technological solutions to interface with the brain. In this framework, a fascinating approach relies on the integration of multiple activation and monitoring capabilities in the same implantable neural probe to better study the multifaceted nature of neural signaling and related functions in the deep brain regions. We highlight current challenges and perspectives on technological developments that could potentially enable the integration of multiple functionalities on optical fiber-based non-planar implantable neurophotonics probes.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11514"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-06DOI: 10.1117/1.NPh.11.S1.S11509
Lyubov V Amitonova
Advances in imaging tools have always been a pivotal driver for new discoveries in neuroscience. An ability to visualize neurons and subcellular structures deep within the brain of a freely behaving animal is integral to our understanding of the relationship between neural activity and higher cognitive functions. However, fast high-resolution imaging is limited to sub-surface brain regions and generally requires head fixation of the animal under the microscope. Developing new approaches to address these challenges is critical. The last decades have seen rapid progress in minimally invasive endo-microscopy techniques based on bare optical fibers. A single multimode fiber can be used to penetrate deep into the brain without causing significant damage to the overlying structures and provide high-resolution imaging. Here, we discuss how the full potential of high-speed super-resolution fiber endoscopy can be realized by a holistic approach that combines fiber optics, light shaping, and advanced computational algorithms. The recent progress opens up new avenues for minimally invasive deep brain studies in freely behaving mice.
{"title":"Multimode fiber endoscopes for computational brain imaging.","authors":"Lyubov V Amitonova","doi":"10.1117/1.NPh.11.S1.S11509","DOIUrl":"10.1117/1.NPh.11.S1.S11509","url":null,"abstract":"<p><p>Advances in imaging tools have always been a pivotal driver for new discoveries in neuroscience. An ability to visualize neurons and subcellular structures deep within the brain of a freely behaving animal is integral to our understanding of the relationship between neural activity and higher cognitive functions. However, fast high-resolution imaging is limited to sub-surface brain regions and generally requires head fixation of the animal under the microscope. Developing new approaches to address these challenges is critical. The last decades have seen rapid progress in minimally invasive endo-microscopy techniques based on bare optical fibers. A single multimode fiber can be used to penetrate deep into the brain without causing significant damage to the overlying structures and provide high-resolution imaging. Here, we discuss how the full potential of high-speed super-resolution fiber endoscopy can be realized by a holistic approach that combines fiber optics, light shaping, and advanced computational algorithms. The recent progress opens up new avenues for minimally invasive deep brain studies in freely behaving mice.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 Suppl 1","pages":"S11509"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-03DOI: 10.1117/1.NPh.11.3.035001
Letizia Contini, Caterina Amendola, Davide Contini, Alessandro Torricelli, Lorenzo Spinelli, Rebecca Re
<p><strong>Significance: </strong>We explore the feasibility of using time-domain (TD) and continuous-wave (CW) functional near-infrared spectroscopy (fNIRS) to monitor brain hemodynamic oscillations during resting-state activity in humans, a phenomenon that is of increasing interest in the scientific and medical community and appears to be crucial to advancing the understanding of both healthy and pathological brain functioning.</p><p><strong>Aim: </strong>Our general object is to maximize fNIRS sensitivity to brain resting-state oscillations. More specifically, we aim to define comprehensive guidelines for optimizing main operational parameters in fNIRS measurements [average photon count rate, measurement length, sampling frequency, and source-detector distance (SSD)]. In addition, we compare TD and CW fNIRS performance for the detection and localization of oscillations.</p><p><strong>Approach: </strong>A series of synthetic TD and CW fNIRS signals were generated by exploiting the solution of the diffusion equation for two different geometries of the probed medium: a homogeneous medium and a bilayer medium. Known and periodical perturbations of the concentrations of oxy- and deoxy-hemoglobin were imposed in the medium, determining changes in its optical properties. The homogeneous slab model was used to determine the effect of multiple measurement parameters on fNIRS sensitivity to oscillatory phenomena, and the bilayer model was used to evaluate and compare the abilities of TD and CW fNIRS in detecting and isolating oscillations occurring at different depths. For TD fNIRS, two approaches to enhance depth-selectivity were evaluated: first, a time-windowing of the photon distribution of time-of-flight was performed, and then, the time-dependent mean partial pathlength (TMPP) method was used to retrieve the hemoglobin concentrations in the medium.</p><p><strong>Results: </strong>In the homogeneous medium case, the sensitivity of TD and CW fNIRS to periodical perturbations of the optical properties increases proportionally with the average photon count rate, the measurement length, and the sampling frequency and approximatively with the square of the SSD. In the bilayer medium case, the time-windowing method can detect and correctly localize the presence of oscillatory components in the TD fNIRS signal, even in the presence of very low photon count rates. The TMPP method demonstrates how to correctly retrieve the periodical variation of hemoglobin at different depths from the TD fNIRS signal acquired at a single SSD. For CW fNIRS, measurements taken at typical SSDs used for short-separation channel regression show notable sensitivity to oscillations occurring in the deep layer, challenging the assumptions underlying this correction method when the focus is on analyzing oscillatory phenomena.</p><p><strong>Conclusions: </strong>We demonstrated that the TD fNIRS technique allows for the detection and depth-localization of periodical fluctuations of
{"title":"Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study.","authors":"Letizia Contini, Caterina Amendola, Davide Contini, Alessandro Torricelli, Lorenzo Spinelli, Rebecca Re","doi":"10.1117/1.NPh.11.3.035001","DOIUrl":"10.1117/1.NPh.11.3.035001","url":null,"abstract":"<p><strong>Significance: </strong>We explore the feasibility of using time-domain (TD) and continuous-wave (CW) functional near-infrared spectroscopy (fNIRS) to monitor brain hemodynamic oscillations during resting-state activity in humans, a phenomenon that is of increasing interest in the scientific and medical community and appears to be crucial to advancing the understanding of both healthy and pathological brain functioning.</p><p><strong>Aim: </strong>Our general object is to maximize fNIRS sensitivity to brain resting-state oscillations. More specifically, we aim to define comprehensive guidelines for optimizing main operational parameters in fNIRS measurements [average photon count rate, measurement length, sampling frequency, and source-detector distance (SSD)]. In addition, we compare TD and CW fNIRS performance for the detection and localization of oscillations.</p><p><strong>Approach: </strong>A series of synthetic TD and CW fNIRS signals were generated by exploiting the solution of the diffusion equation for two different geometries of the probed medium: a homogeneous medium and a bilayer medium. Known and periodical perturbations of the concentrations of oxy- and deoxy-hemoglobin were imposed in the medium, determining changes in its optical properties. The homogeneous slab model was used to determine the effect of multiple measurement parameters on fNIRS sensitivity to oscillatory phenomena, and the bilayer model was used to evaluate and compare the abilities of TD and CW fNIRS in detecting and isolating oscillations occurring at different depths. For TD fNIRS, two approaches to enhance depth-selectivity were evaluated: first, a time-windowing of the photon distribution of time-of-flight was performed, and then, the time-dependent mean partial pathlength (TMPP) method was used to retrieve the hemoglobin concentrations in the medium.</p><p><strong>Results: </strong>In the homogeneous medium case, the sensitivity of TD and CW fNIRS to periodical perturbations of the optical properties increases proportionally with the average photon count rate, the measurement length, and the sampling frequency and approximatively with the square of the SSD. In the bilayer medium case, the time-windowing method can detect and correctly localize the presence of oscillatory components in the TD fNIRS signal, even in the presence of very low photon count rates. The TMPP method demonstrates how to correctly retrieve the periodical variation of hemoglobin at different depths from the TD fNIRS signal acquired at a single SSD. For CW fNIRS, measurements taken at typical SSDs used for short-separation channel regression show notable sensitivity to oscillations occurring in the deep layer, challenging the assumptions underlying this correction method when the focus is on analyzing oscillatory phenomena.</p><p><strong>Conclusions: </strong>We demonstrated that the TD fNIRS technique allows for the detection and depth-localization of periodical fluctuations of ","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"035001"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-02-19DOI: 10.1117/1.NPh.11.3.033405
Riichiro Hira
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
{"title":"Closed-loop experiments and brain machine interfaces with multiphoton microscopy.","authors":"Riichiro Hira","doi":"10.1117/1.NPh.11.3.033405","DOIUrl":"10.1117/1.NPh.11.3.033405","url":null,"abstract":"<p><p>In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution <i>in vivo</i>-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using <i>in vivo</i> two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"033405"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}