Tingting Zu, Zhongya Cai, Lixin Qu, Robert D. Hetland, Caijing Huang, Lin Luo, Dongxiao Wang
Broadened width of high chlorophyll concentration band with wavy structures, patches, and filaments are often observed along the western coastal next to the Pearl River Estuary over the northern South China Sea shelf during the transition period from winter to summer monsoon. Whereas, there is no such wide band in other seasons. By using a high-resolution numerical model, we reveal that the complex structure and wider band of high coastal chlorophyll concentration results from the smaller scale eddies (about 20–50 km in diameter) associated with buoyant plume-induced salinity front and density fronts, which are roughly along the 30 and 50 m isobaths, respectively. Two trains of eddies are formed along the fronts by the baroclinic instability triggered by frequently alternating winds over the fronts during the period of monsoon transition. The influences of these two trains of eddies are extended in the cross-shelf direction by their interactions, and they can temporally enhance the cross-shelf flow and material exchange. They serve as an efficient pathway to link the inner shelf toward the continental slope.
{"title":"Enhanced Cross-Shelf Exchange by the Eddies Associated With Plume Front","authors":"Tingting Zu, Zhongya Cai, Lixin Qu, Robert D. Hetland, Caijing Huang, Lin Luo, Dongxiao Wang","doi":"10.1029/2024JC021160","DOIUrl":"https://doi.org/10.1029/2024JC021160","url":null,"abstract":"<p>Broadened width of high chlorophyll concentration band with wavy structures, patches, and filaments are often observed along the western coastal next to the Pearl River Estuary over the northern South China Sea shelf during the transition period from winter to summer monsoon. Whereas, there is no such wide band in other seasons. By using a high-resolution numerical model, we reveal that the complex structure and wider band of high coastal chlorophyll concentration results from the smaller scale eddies (about 20–50 km in diameter) associated with buoyant plume-induced salinity front and density fronts, which are roughly along the 30 and 50 m isobaths, respectively. Two trains of eddies are formed along the fronts by the baroclinic instability triggered by frequently alternating winds over the fronts during the period of monsoon transition. The influences of these two trains of eddies are extended in the cross-shelf direction by their interactions, and they can temporally enhance the cross-shelf flow and material exchange. They serve as an efficient pathway to link the inner shelf toward the continental slope.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat and momentum transport processes are studied through direct numerical simulations of air-water two-phase flows with surface waves under wave-wind couplings. Three wave age cases, sea state changing from wind sea to swell, are analyzed to investigate the roles of surface waves in the turbulent transport of heat and momentum, which are examined by decomposing the statistics into the plane-averaged, wave-coherent, and turbulent-induced components. Under wind sea conditions, a dissimilarity in turbulent transfer between heat and momentum is observed in the near-surface region. This discrepancy arises from the enhanced countergradient heat transport on the leeward side, which is caused by wave-coherent structures. The surface waves induce phase-dependent variations in the temperature and flow structures, reducing the scale of temperature structure. This reduction further results in a weaker contribution of ejections and sweeps to heat transfer. In contrast, momentum transport is predominantly downgradient on the leeward side due to the large-scale flow structure. This difference in coherent structures leads to the dissimilar transport between heat and momentum. Under lower-frequency swell conditions, surface waves induce an upward momentum that enhances the vortical structures near the wave surface. The transfer efficiency of turbulent momentum and heat gradually reaches equilibrium, after which both transport processes become more analogous.
{"title":"Characteristics of the Dissimilar Turbulent Transport Processes of Heat and Momentum During Wind-Wave Dynamical Interactions","authors":"Jinlong Zhang, Yuhong Dong, Lian Shen","doi":"10.1029/2024JC021320","DOIUrl":"https://doi.org/10.1029/2024JC021320","url":null,"abstract":"<p>Heat and momentum transport processes are studied through direct numerical simulations of air-water two-phase flows with surface waves under wave-wind couplings. Three wave age cases, sea state changing from wind sea to swell, are analyzed to investigate the roles of surface waves in the turbulent transport of heat and momentum, which are examined by decomposing the statistics into the plane-averaged, wave-coherent, and turbulent-induced components. Under wind sea conditions, a dissimilarity in turbulent transfer between heat and momentum is observed in the near-surface region. This discrepancy arises from the enhanced countergradient heat transport on the leeward side, which is caused by wave-coherent structures. The surface waves induce phase-dependent variations in the temperature and flow structures, reducing the scale of temperature structure. This reduction further results in a weaker contribution of ejections and sweeps to heat transfer. In contrast, momentum transport is predominantly downgradient on the leeward side due to the large-scale flow structure. This difference in coherent structures leads to the dissimilar transport between heat and momentum. Under lower-frequency swell conditions, surface waves induce an upward momentum that enhances the vortical structures near the wave surface. The transfer efficiency of turbulent momentum and heat gradually reaches equilibrium, after which both transport processes become more analogous.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Murata, S. Kouketsu, K. Sasaoka, K. Arulananthan
To elucidate impacts of an Indian Ocean Dipole (IOD) event on surface seawater CO2 dynamics, we analyzed data collected along the World Ocean Circulation Experiment Hydrographic Program I08 N line (latitudes 20°S–6°N at 80°E) in December 2019, when a strong positive IOD (pIOD) event occurred. After removing the effects of anthropogenic CO2 accumulation, we examined anomalies of the surface seawater CO2 fugacity (fCO2) from the climatology in relation to other marine properties. At latitudes 11°S–6°S, where horizontal advection of upwelled water off Sumatra was observed, dissolved inorganic carbon and total alkalinity, both normalized to a salinity of 35 (nTCO2 and nTA) showed positive anomalies of +11.4 and +8.1 μmol kg−1, respectively. At latitudes 5°S–5°N, where distinct low-salinity water was observed because of the pIOD, nTCO2 and nTA showed negative anomalies of −4.0 and ‒0.5 μmol kg−1, respectively. The combined effects of the nTCO2 and nTA anomalies on fCO2 made the observed fCO2 anomalies small, +3.2 and −6.6 μatm for 6°S–11°S and 5°S–5°N, respectively, because the direction of the Revelle factor for TCO2 is opposite to that for TA. We estimated that the pIOD modulated the air–sea CO2 flux by +0.45 and −0.55 mmol m−2 d−1 on average within11°S–6°S and 5°S–5°N, respectively. The impacts of the pIOD on the CO2 dynamics could be explained by the anomalous salinity conditions associated with upwelled water and the freshwater balance.
{"title":"Modulation of Surface Seawater CO2 System at 80°E: Impacts of the Positive IOD in 2019","authors":"A. Murata, S. Kouketsu, K. Sasaoka, K. Arulananthan","doi":"10.1029/2024JC021177","DOIUrl":"https://doi.org/10.1029/2024JC021177","url":null,"abstract":"<p>To elucidate impacts of an Indian Ocean Dipole (IOD) event on surface seawater CO<sub>2</sub> dynamics, we analyzed data collected along the World Ocean Circulation Experiment Hydrographic Program I08 N line (latitudes 20°S–6°N at 80°E) in December 2019, when a strong positive IOD (pIOD) event occurred. After removing the effects of anthropogenic CO<sub>2</sub> accumulation, we examined anomalies of the surface seawater CO<sub>2</sub> fugacity (fCO<sub>2</sub>) from the climatology in relation to other marine properties. At latitudes 11°S–6°S, where horizontal advection of upwelled water off Sumatra was observed, dissolved inorganic carbon and total alkalinity, both normalized to a salinity of 35 (nTCO<sub>2</sub> and nTA) showed positive anomalies of +11.4 and +8.1 μmol kg<sup>−1</sup>, respectively. At latitudes 5°S–5°N, where distinct low-salinity water was observed because of the pIOD, nTCO<sub>2</sub> and nTA showed negative anomalies of −4.0 and ‒0.5 μmol kg<sup>−1</sup>, respectively. The combined effects of the nTCO<sub>2</sub> and nTA anomalies on fCO<sub>2</sub> made the observed fCO<sub>2</sub> anomalies small, +3.2 and −6.6 μatm for 6°S–11°S and 5°S–5°N, respectively, because the direction of the Revelle factor for TCO<sub>2</sub> is opposite to that for TA. We estimated that the pIOD modulated the air–sea CO<sub>2</sub> flux by +0.45 and −0.55 mmol m<sup>−2</sup> d<sup>−1</sup> on average within11°S–6°S and 5°S–5°N, respectively. The impacts of the pIOD on the CO<sub>2</sub> dynamics could be explained by the anomalous salinity conditions associated with upwelled water and the freshwater balance.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 12","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junyi Ni, Mingming Chen, Jiaming Shen, Li Liu, Zong-Pei Jiang, Kuanbo Zhou, Xiaolin Li, Minhan Dai, Yao Zhang
The cyclonic eddy uplifts nutrient-rich seawater into the euphotic zone, typically directly enhancing phytoplankton abundance and primary production. However, its impact on heterotrophic prokaryotic production (HPP) remains unclear due to the complex interplay of multiple indirect factors governing this process. Here, we conducted a comprehensive investigation of the distribution of picophytoplankton and heterotrophic prokaryotes, prokaryotic community structure, and HPP within a cyclonic eddy in the western North Pacific subtropical gyre. The results indicated that despite the higher abundance of picophytoplankton accompanied by nutrient upwelling at the eddy core compared to the edge, higher levels of HPP were observed at the eddy edge between 100 and 200 m, consistent with the distribution of the low nucleic acid content (LNA) prokaryotes. The significant positive correlation between HPP and the proportion of LNA group in total heterotrophic prokaryotes suggested a primary contribution from the LNA group over the high nucleic acid content (HNA) group. SAR11, a typical member of the LNA group, may primarily contribute to the elevated HPP observed at the eddy edge. The changes in temperature, nutrients, and light intensity induced by the cyclonic eddy may significantly influence the distribution and activity of HNA and LNA groups, potentially exerting a greater impact on HPP compared to phytoplankton-related factors. These findings contribute to understanding the underlying mechanisms of HPP responses to cyclonic eddies in the oligotrophic open ocean.
{"title":"Elevated Heterotrophic Prokaryotic Production Supported by Low Nucleic Acid Prokaryotes at a Cyclonic Eddy Edge in the Northwest Pacific","authors":"Junyi Ni, Mingming Chen, Jiaming Shen, Li Liu, Zong-Pei Jiang, Kuanbo Zhou, Xiaolin Li, Minhan Dai, Yao Zhang","doi":"10.1029/2024JC021414","DOIUrl":"https://doi.org/10.1029/2024JC021414","url":null,"abstract":"<p>The cyclonic eddy uplifts nutrient-rich seawater into the euphotic zone, typically directly enhancing phytoplankton abundance and primary production. However, its impact on heterotrophic prokaryotic production (HPP) remains unclear due to the complex interplay of multiple indirect factors governing this process. Here, we conducted a comprehensive investigation of the distribution of picophytoplankton and heterotrophic prokaryotes, prokaryotic community structure, and HPP within a cyclonic eddy in the western North Pacific subtropical gyre. The results indicated that despite the higher abundance of picophytoplankton accompanied by nutrient upwelling at the eddy core compared to the edge, higher levels of HPP were observed at the eddy edge between 100 and 200 m, consistent with the distribution of the low nucleic acid content (LNA) prokaryotes. The significant positive correlation between HPP and the proportion of LNA group in total heterotrophic prokaryotes suggested a primary contribution from the LNA group over the high nucleic acid content (HNA) group. SAR11, a typical member of the LNA group, may primarily contribute to the elevated HPP observed at the eddy edge. The changes in temperature, nutrients, and light intensity induced by the cyclonic eddy may significantly influence the distribution and activity of HNA and LNA groups, potentially exerting a greater impact on HPP compared to phytoplankton-related factors. These findings contribute to understanding the underlying mechanisms of HPP responses to cyclonic eddies in the oligotrophic open ocean.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021414","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subsurface eddies, characterized by their cores located within or below the pycnocline, can transport materials over long distances in the ocean's interior. Observations of these eddies are sparse, limiting our understanding of their regional distribution and detailed horizontal structures, particularly in high-latitude areas. The Bering Sea, situated in the subarctic region, is among the world's most productive areas and significantly influences the Arctic Ocean's state, thereby impacting climate change. In this study, we utilize ultrahigh resolution (approximately 10 m) data to investigate the distribution and characteristics of subsurface eddies in the Aleutian Basin, Bering Sea. We detected 44 subsurface eddies in 13 survey transects and analyzed their morphological and hydrographic characteristics, spatial distribution, propagation, and transport. The results show that the average core radius of the subsurface eddies is about 11.62 km and they exhibit complex structures in both the core and flank regions. The dichothermal layer cold-core eddies are prevalent in the deep-water region of the Bering Sea, contributing approximately 1.76 Sv poleward and westward transport in the subsurface layer. This is the first three-dimensional depiction of subsurface eddies in the Bering Sea, revealing that the prevalence of subsurface eddies in the Bering Sea may have been negligent, with significant implications for the hydrographic and biogeochemical properties of both the Bering Sea and the Arctic Ocean. More detailed comprehensive and long-term observations should be made to assess the global impact of subsurface eddies in the future.
{"title":"Distribution and Characteristics of the Subsurface Eddies in the Aleutian Basin, Bering Sea","authors":"Kun Zhang, Haibin Song, Linghan Meng, Shun Yang","doi":"10.1029/2024JC021402","DOIUrl":"https://doi.org/10.1029/2024JC021402","url":null,"abstract":"<p>Subsurface eddies, characterized by their cores located within or below the pycnocline, can transport materials over long distances in the ocean's interior. Observations of these eddies are sparse, limiting our understanding of their regional distribution and detailed horizontal structures, particularly in high-latitude areas. The Bering Sea, situated in the subarctic region, is among the world's most productive areas and significantly influences the Arctic Ocean's state, thereby impacting climate change. In this study, we utilize ultrahigh resolution (approximately 10 m) data to investigate the distribution and characteristics of subsurface eddies in the Aleutian Basin, Bering Sea. We detected 44 subsurface eddies in 13 survey transects and analyzed their morphological and hydrographic characteristics, spatial distribution, propagation, and transport. The results show that the average core radius of the subsurface eddies is about 11.62 km and they exhibit complex structures in both the core and flank regions. The dichothermal layer cold-core eddies are prevalent in the deep-water region of the Bering Sea, contributing approximately 1.76 Sv poleward and westward transport in the subsurface layer. This is the first three-dimensional depiction of subsurface eddies in the Bering Sea, revealing that the prevalence of subsurface eddies in the Bering Sea may have been negligent, with significant implications for the hydrographic and biogeochemical properties of both the Bering Sea and the Arctic Ocean. More detailed comprehensive and long-term observations should be made to assess the global impact of subsurface eddies in the future.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A topography change in the continental plain plays an important role in nutrient replenishment mechanisms in oligotrophic oceans. Effects of the topography on the nutrient distribution in the western South China Sea (WSCS) have been overlooked since most studies have focused on the dipole-induced upwelling and downwelling processes of nutrients. We hypothesize that the seamount topography in the northwestern side of the WSCS contributes to the upward distribution of nutrients. We conducted a cruise to investigate the vertical distribution of nutrients in a large area where there is a gradient in the topography: shallow in the north to deep in the south. Our results showed that the depth contours of nutrients, temperature, and salinity shoaled upward from deep to shallow with their isolines being parallel to the bottom depth. The depth of mixed layer, pycnocline, nutricline, and deep chlorophyll maximum showed the similar topographic effect. In the deep water column of 4,308 m deep, integrated NO3− and PO43– over 0–200 m were 879.60 and 81.78 mmol m−2, but increased to 2010.17 and 143.79 mmol m−2 in the shallow water column of 930 m deep, respectively. The increased supply of nutrients enhanced 0–200 m integrated chlorophyll from 21.71 mg m−2 in the deep water column to 51.51 mg m−2 in the shallow water column. These results demonstrate that topographic elevations such as seamounts induce deep-to-shallow shoaling and upwelling that lead to enhanced nutrients and biological production in the euphotic zone of oligotrophic oceans.
{"title":"Effects of Topography on Nutrient Variations in the Western South China Sea","authors":"Fangjuan Huang, Yong Chen, Kuo Wang, Junjian Liang, Qinyu Liu, Zhiyao Xiong, Fei Lan, Kedong Yin","doi":"10.1029/2024JC021006","DOIUrl":"https://doi.org/10.1029/2024JC021006","url":null,"abstract":"<p>A topography change in the continental plain plays an important role in nutrient replenishment mechanisms in oligotrophic oceans. Effects of the topography on the nutrient distribution in the western South China Sea (WSCS) have been overlooked since most studies have focused on the dipole-induced upwelling and downwelling processes of nutrients. We hypothesize that the seamount topography in the northwestern side of the WSCS contributes to the upward distribution of nutrients. We conducted a cruise to investigate the vertical distribution of nutrients in a large area where there is a gradient in the topography: shallow in the north to deep in the south. Our results showed that the depth contours of nutrients, temperature, and salinity shoaled upward from deep to shallow with their isolines being parallel to the bottom depth. The depth of mixed layer, pycnocline, nutricline, and deep chlorophyll maximum showed the similar topographic effect. In the deep water column of 4,308 m deep, integrated NO<sub>3</sub><sup>−</sup> and PO<sub>4</sub><sup>3–</sup> over 0–200 m were 879.60 and 81.78 mmol m<sup>−2</sup>, but increased to 2010.17 and 143.79 mmol m<sup>−2</sup> in the shallow water column of 930 m deep, respectively. The increased supply of nutrients enhanced 0–200 m integrated chlorophyll from 21.71 mg m<sup>−2</sup> in the deep water column to 51.51 mg m<sup>−2</sup> in the shallow water column. These results demonstrate that topographic elevations such as seamounts induce deep-to-shallow shoaling and upwelling that lead to enhanced nutrients and biological production in the euphotic zone of oligotrophic oceans.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 11","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel M. Kelly, Erica L. Green, Ian A. Stokes, Jay A. Austin, Andrew J. Lucas, Jonathan D. Nash
<p>Wind over the ocean generates near-inertial velocities. In the open ocean, horizontal variability in the inertial frequency and mesoscale vorticity generate internal waves that transport energy laterally and drive diapcynal mixing in remote locations. In the coastal ocean, horizontal variability is produced by the coastline. This study analyzes observations along a straight coastline in Lake Superior, which acts as a “natural laboratory” for the coastal ocean. Depth-profiles of velocity, temperature, and turbulent miscrostructure were collected during a 96 hr repeat survey from 3 to 20 km offshore in Aug 2018. Wind work was 2 mW <span></span><math>