Micheal McLamb, Seran Park, V. Stinson, Yanzeng Li, Nuren Shuchi, G. Boreman, T. Hofmann
Metamaterials, in the form of perfect absorbers, have recently received attention for sensing and light-harvesting applications. The fabrication of such metamaterials involves several process steps and can often lead to nonidealities, which limit the performance of the metamaterial. A novel reciprocal plasmonic metasurface geometry composed of two plasmonic metasurfaces separated by a dielectric spacer was developed and investigated here. This geometry avoids many common fabrication-induced nonidealities by design and is synthesized by a combination of two-photon polymerization and electron-beam-based metallization. Infrared reflection measurements revealed that the reciprocal plasmonic metasurface is very sensitive to ultra-thin, conformal dielectric coatings. This is shown here by using Al2O3 grown by atomic layer deposition. It was observed experimentally that incremental conformal coatings of amorphous Al2O3 result in a spectral red shift of the absorption band of the reciprocal plasmonic metasurface. The experimental observations were corroborated by finite element model calculations, which also demonstrated a strong sensitivity of the reciprocal plasmonic metasurface geometry to conformal dielectric coatings. These coatings therefore offer the possibility for post-fabrication tuning of the reciprocal plasmonic metasurface resonances, thus rendering this novel geometry as an ideal candidate for narrow-band absorbers, which allow for cost-effective fabrication and tuning.
{"title":"Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-Thin Conformal Coatings","authors":"Micheal McLamb, Seran Park, V. Stinson, Yanzeng Li, Nuren Shuchi, G. Boreman, T. Hofmann","doi":"10.3390/opt3010009","DOIUrl":"https://doi.org/10.3390/opt3010009","url":null,"abstract":"Metamaterials, in the form of perfect absorbers, have recently received attention for sensing and light-harvesting applications. The fabrication of such metamaterials involves several process steps and can often lead to nonidealities, which limit the performance of the metamaterial. A novel reciprocal plasmonic metasurface geometry composed of two plasmonic metasurfaces separated by a dielectric spacer was developed and investigated here. This geometry avoids many common fabrication-induced nonidealities by design and is synthesized by a combination of two-photon polymerization and electron-beam-based metallization. Infrared reflection measurements revealed that the reciprocal plasmonic metasurface is very sensitive to ultra-thin, conformal dielectric coatings. This is shown here by using Al2O3 grown by atomic layer deposition. It was observed experimentally that incremental conformal coatings of amorphous Al2O3 result in a spectral red shift of the absorption band of the reciprocal plasmonic metasurface. The experimental observations were corroborated by finite element model calculations, which also demonstrated a strong sensitivity of the reciprocal plasmonic metasurface geometry to conformal dielectric coatings. These coatings therefore offer the possibility for post-fabrication tuning of the reciprocal plasmonic metasurface resonances, thus rendering this novel geometry as an ideal candidate for narrow-band absorbers, which allow for cost-effective fabrication and tuning.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80135084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maik Meudt, Andreas Henkel, Maximilian Buchmüller, P. Görrn
Waveguide gratings are used for applications such as guided-mode resonance filters and fiber-to-chip couplers. A waveguide grating typically consists of a stack of a single-mode slab waveguide and a grating. The filling factor of the grating with respect to the mode intensity profile can be altered via changing the waveguide’s refractive index. As a result, the propagation length of the mode is slightly sensitive to refractive index changes. Here, we theoretically investigate whether this sensitivity can be increased by using alternative waveguide grating geometries. Using rigorous coupled-wave analysis (RCWA), the filling factors of the modes of waveguide gratings supporting more than one mode are simulated. It is observed that both long propagation lengths and large sensitivities with respect to refractive index changes can be achieved by using the intensity nodes of higher-order modes.
{"title":"A Theoretical Description of Node-Aligned Resonant Waveguide Gratings","authors":"Maik Meudt, Andreas Henkel, Maximilian Buchmüller, P. Görrn","doi":"10.3390/opt3010008","DOIUrl":"https://doi.org/10.3390/opt3010008","url":null,"abstract":"Waveguide gratings are used for applications such as guided-mode resonance filters and fiber-to-chip couplers. A waveguide grating typically consists of a stack of a single-mode slab waveguide and a grating. The filling factor of the grating with respect to the mode intensity profile can be altered via changing the waveguide’s refractive index. As a result, the propagation length of the mode is slightly sensitive to refractive index changes. Here, we theoretically investigate whether this sensitivity can be increased by using alternative waveguide grating geometries. Using rigorous coupled-wave analysis (RCWA), the filling factors of the modes of waveguide gratings supporting more than one mode are simulated. It is observed that both long propagation lengths and large sensitivities with respect to refractive index changes can be achieved by using the intensity nodes of higher-order modes.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"129 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81028417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report the first ever demonstration of a wavelength-locked Alexandrite laser using a volume Bragg grating (VBG) as a wavelength-selective mirror. Output power of 3.3 W with a diffraction limited beam quality of M2=1.1 was obtained at a lasing wavelength of 762.2 nm and a linewidth (FWHM) of 2.5 GHz.
{"title":"Volume Bragg Grating Locked Alexandrite Laser","authors":"Goronwy Tawy, A. Minassian, M. Damzen","doi":"10.3390/opt3010007","DOIUrl":"https://doi.org/10.3390/opt3010007","url":null,"abstract":"We report the first ever demonstration of a wavelength-locked Alexandrite laser using a volume Bragg grating (VBG) as a wavelength-selective mirror. Output power of 3.3 W with a diffraction limited beam quality of M2=1.1 was obtained at a lasing wavelength of 762.2 nm and a linewidth (FWHM) of 2.5 GHz.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83621118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rigorous peer-reviews are the basis of high-quality academic publishing [...]
严格的同行评议是高质量学术出版的基础[…]
{"title":"Acknowledgment to Reviewers of Optics in 2021","authors":"","doi":"10.3390/opt3010005","DOIUrl":"https://doi.org/10.3390/opt3010005","url":null,"abstract":"Rigorous peer-reviews are the basis of high-quality academic publishing [...]","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88814125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Polyakova, A. Soloveva, P. Peretyagin, M. Presnyakova, V. Vaks, A. V. Kornaukhov
Burns are an actual problem of modern medicine. Oxidative stress, microcirculation, and hemostasis disorders are important links in the pathogenesis of burn disease. It is shown that these processes are significantly influenced by the point effect of low-intensity (LI) electromagnetic radiation (EMR) of the millimeter (MM) and submillimeter (subMM) ranges. However, the final opinion on the advantages of a particular range has not been formed. We have given a comparative assessment of the results of the effects of various frequency-energy parameters of microwaves on the indicators of adaptive reactions in rats under experimental thermal trauma and viscoelastic properties of blood in the case of burn disease.
{"title":"Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn","authors":"A. Polyakova, A. Soloveva, P. Peretyagin, M. Presnyakova, V. Vaks, A. V. Kornaukhov","doi":"10.3390/opt3010004","DOIUrl":"https://doi.org/10.3390/opt3010004","url":null,"abstract":"Burns are an actual problem of modern medicine. Oxidative stress, microcirculation, and hemostasis disorders are important links in the pathogenesis of burn disease. It is shown that these processes are significantly influenced by the point effect of low-intensity (LI) electromagnetic radiation (EMR) of the millimeter (MM) and submillimeter (subMM) ranges. However, the final opinion on the advantages of a particular range has not been formed. We have given a comparative assessment of the results of the effects of various frequency-energy parameters of microwaves on the indicators of adaptive reactions in rats under experimental thermal trauma and viscoelastic properties of blood in the case of burn disease.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86966737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Lebedev, A. Demenev, A. Parakhonsky, O. Misochko
In this work, we present new experimental evidence of a nonclassical behavior of a multimode Fabry–Perot (FP) semiconductor laser by the measurements of intensity correlation functions. Due to the multimode quantum state occurrence, instead of expected correlations between the intensities of the laser modes (a semiclassical theory), their anticorrelations were revealed.
{"title":"New Evidence for a Nonclassical Behavior of Laser Multimode Light","authors":"M. Lebedev, A. Demenev, A. Parakhonsky, O. Misochko","doi":"10.3390/opt3010006","DOIUrl":"https://doi.org/10.3390/opt3010006","url":null,"abstract":"In this work, we present new experimental evidence of a nonclassical behavior of a multimode Fabry–Perot (FP) semiconductor laser by the measurements of intensity correlation functions. Due to the multimode quantum state occurrence, instead of expected correlations between the intensities of the laser modes (a semiclassical theory), their anticorrelations were revealed.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88345894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Serra, Á. Sánchez Trancón, O. Torrado Sierra, A. M. Baptista, Santiago Cerpa Manito
Posterior chamber phakic intraocular lens implantation is a refractive technique for the correction of myopia. This study aimed to identify those factors contributing to variability in postoperative refraction. Methods: This retrospective study evaluated 73 eyes (one eye per patient) implanted with myopic implantable collamer lenses (ICL). Eyes were divided into two groups, the low myopic group (LMG) (ICL > −9.5 DS) and the high myopic group (HMG) (ICL ≤ −9.5 DS), to compare the predictability, efficacy index, and postoperative refraction between groups. The association of postoperative refraction with anatomical, demographic, and optical features was assessed through correlation analysis and investigated using ray-tracing. Results: Postoperative refraction at 3 months for the whole group was close to emmetropia at −0.02 ± 0.37 DS, the LMG tended toward myopia and the HMG, toward hyperopia. The results showed that 65% and 54% of the eyes had postoperative refraction of within ±0.25 DS, respectively, in the LMG and HMG, and in both groups, 100% were within ±1.00 DS. ICL implantation had a higher efficacy index in the HMG (1.13 ± 0.15) than in the LMG (1.04 ± 0.15). Postoperative refraction was positively associated with the vault (R = 0.408) and negatively correlated with ICL power (R = −0.382). Conclusion: The predictability and effectiveness of ICL implantation is high in a wide range of myopias. Considering the expected vault and including accurate vertex measurements would contribute to improving the predictability of the results.
{"title":"Posterior Chamber Phakic Intraocular Lenses for the Correction of Myopia: Factors Influencing the Postoperative Refraction","authors":"P. Serra, Á. Sánchez Trancón, O. Torrado Sierra, A. M. Baptista, Santiago Cerpa Manito","doi":"10.3390/opt2040028","DOIUrl":"https://doi.org/10.3390/opt2040028","url":null,"abstract":"Posterior chamber phakic intraocular lens implantation is a refractive technique for the correction of myopia. This study aimed to identify those factors contributing to variability in postoperative refraction. Methods: This retrospective study evaluated 73 eyes (one eye per patient) implanted with myopic implantable collamer lenses (ICL). Eyes were divided into two groups, the low myopic group (LMG) (ICL > −9.5 DS) and the high myopic group (HMG) (ICL ≤ −9.5 DS), to compare the predictability, efficacy index, and postoperative refraction between groups. The association of postoperative refraction with anatomical, demographic, and optical features was assessed through correlation analysis and investigated using ray-tracing. Results: Postoperative refraction at 3 months for the whole group was close to emmetropia at −0.02 ± 0.37 DS, the LMG tended toward myopia and the HMG, toward hyperopia. The results showed that 65% and 54% of the eyes had postoperative refraction of within ±0.25 DS, respectively, in the LMG and HMG, and in both groups, 100% were within ±1.00 DS. ICL implantation had a higher efficacy index in the HMG (1.13 ± 0.15) than in the LMG (1.04 ± 0.15). Postoperative refraction was positively associated with the vault (R = 0.408) and negatively correlated with ICL power (R = −0.382). Conclusion: The predictability and effectiveness of ICL implantation is high in a wide range of myopias. Considering the expected vault and including accurate vertex measurements would contribute to improving the predictability of the results.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79417539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Stinson, Seran Park, Micheal McLamb, G. Boreman, T. Hofmann
One-dimensional photonic crystals composed of alternating layers with high- and low-density were fabricated using two-photon polymerization from a single photosensitive polymer for the infrared spectral range. By introducing single high-density layers to break the periodicity of the photonic crystals, a narrow-band defect mode is induced. The defect mode is located in the center of the photonic bandgap of the one-dimensional photonic crystal. The fabricated photonic crystals were investigated using infrared reflection measurements. Stratified-layer optical models were employed in the design and characterization of the spectral response of the photonic crystals. A very good agreement was found between the model-calculated and measured reflection spectra. The geometric parameters of the photonic crystals obtained as a result of the optical model analysis were found to be in good agreement with the nominal dimensions of the photonic crystal constituents. This is supported by complimentary scanning electron microscope imaging, which verified the model-calculated, nominal layer thicknesses. Conventionally, the accurate fabrication of such structures would require layer-independent print parameters, which are difficult to obtain with high precision. In this study an alternative approach is employed, using density-dependent scaling factors, introduced here for the first time. Using these scaling factors a fast and true-to-design method for the fabrication of layers with significantly different surface-to-volume ratios. The reported observations furthermore demonstrate that the location and amplitude of defect modes is extremely sensitive to any layer thickness non-uniformities in the photonic crystal structure. Considering these capabilities, one-dimensional photonic crystals engineered with defect modes can be employed as narrow band filters, for instance, while also providing a method to quantify important fabrication parameters.
{"title":"Photonic Crystals with a Defect Fabricated by Two-Photon Polymerization for the Infrared Spectral Range","authors":"V. Stinson, Seran Park, Micheal McLamb, G. Boreman, T. Hofmann","doi":"10.3390/opt2040027","DOIUrl":"https://doi.org/10.3390/opt2040027","url":null,"abstract":"One-dimensional photonic crystals composed of alternating layers with high- and low-density were fabricated using two-photon polymerization from a single photosensitive polymer for the infrared spectral range. By introducing single high-density layers to break the periodicity of the photonic crystals, a narrow-band defect mode is induced. The defect mode is located in the center of the photonic bandgap of the one-dimensional photonic crystal. The fabricated photonic crystals were investigated using infrared reflection measurements. Stratified-layer optical models were employed in the design and characterization of the spectral response of the photonic crystals. A very good agreement was found between the model-calculated and measured reflection spectra. The geometric parameters of the photonic crystals obtained as a result of the optical model analysis were found to be in good agreement with the nominal dimensions of the photonic crystal constituents. This is supported by complimentary scanning electron microscope imaging, which verified the model-calculated, nominal layer thicknesses. Conventionally, the accurate fabrication of such structures would require layer-independent print parameters, which are difficult to obtain with high precision. In this study an alternative approach is employed, using density-dependent scaling factors, introduced here for the first time. Using these scaling factors a fast and true-to-design method for the fabrication of layers with significantly different surface-to-volume ratios. The reported observations furthermore demonstrate that the location and amplitude of defect modes is extremely sensitive to any layer thickness non-uniformities in the photonic crystal structure. Considering these capabilities, one-dimensional photonic crystals engineered with defect modes can be employed as narrow band filters, for instance, while also providing a method to quantify important fabrication parameters.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73149621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transepithelial photorefractive keratectomy (TransPRK) is an established surface ablation technique used to correct refractive errors. Using anterior segment optical coherence (AS-OCT), it is now possible to measure the epithelium thickness and input these data into the laser platform. In this study, we explore whether better results were obtained in this way. To this end, we retrospectively analyze the results from a low-myopia group treated with a customized epithelium thickness, as measured using AS-OCT, and compare them with the results from a group treated with an optimized standard epithelium thickness. The customized epithelium profile group contains more eyes with vision better than 20/20, and more eyes in this group gain one line of corrected distance visual acuity (CDVA). In conclusion, with the customized epithelium thickness, we obtain superior results using TransPRK in low-myopia corrections.
{"title":"Customized versus Standard Epithelium Profiles in Transepithelial Photorefractive Keratectomy","authors":"D. de Ortueta, D. von Rüden, S. Arba-Mosquera","doi":"10.3390/opt2040025","DOIUrl":"https://doi.org/10.3390/opt2040025","url":null,"abstract":"Transepithelial photorefractive keratectomy (TransPRK) is an established surface ablation technique used to correct refractive errors. Using anterior segment optical coherence (AS-OCT), it is now possible to measure the epithelium thickness and input these data into the laser platform. In this study, we explore whether better results were obtained in this way. To this end, we retrospectively analyze the results from a low-myopia group treated with a customized epithelium thickness, as measured using AS-OCT, and compare them with the results from a group treated with an optimized standard epithelium thickness. The customized epithelium profile group contains more eyes with vision better than 20/20, and more eyes in this group gain one line of corrected distance visual acuity (CDVA). In conclusion, with the customized epithelium thickness, we obtain superior results using TransPRK in low-myopia corrections.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75446018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luminescent solar concentrators (LSCs) have been widely studied for their potential application as building-integrated photovoltaics (BIPV). While numerous efforts have been made to improve the performance, the photothermal (PT) properties of LSCs are rarely investigated. In this report, we studied the PT properties of an LSC with a power conversion efficiency (PCE) of 3.27% and a concentration ratio of 1.42. The results showed that the total PT power of the LSC was 13.2 W, and the heat was concentrated on the edge of the luminescent waveguide with a high heat power density of over 200 W m−2.
发光太阳能聚光器(LSCs)因其在建筑集成光伏(BIPV)中的潜在应用而受到广泛的研究。虽然人们已经做出了许多努力来提高LSCs的性能,但对其光热(PT)性能的研究却很少。本文研究了功率转换效率(PCE)为3.27%、浓度比为1.42的LSC的PT特性。结果表明,LSC的总PT功率为13.2 W,热量集中在发光波导边缘,热功率密度高达200 W m−2以上。
{"title":"Mapping the Surface Heat of Luminescent Solar Concentrators","authors":"Yujian Sun, Yongcao Zhang, Yilin Li","doi":"10.3390/opt2040024","DOIUrl":"https://doi.org/10.3390/opt2040024","url":null,"abstract":"Luminescent solar concentrators (LSCs) have been widely studied for their potential application as building-integrated photovoltaics (BIPV). While numerous efforts have been made to improve the performance, the photothermal (PT) properties of LSCs are rarely investigated. In this report, we studied the PT properties of an LSC with a power conversion efficiency (PCE) of 3.27% and a concentration ratio of 1.42. The results showed that the total PT power of the LSC was 13.2 W, and the heat was concentrated on the edge of the luminescent waveguide with a high heat power density of over 200 W m−2.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76114180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}