Pub Date : 2023-08-01Epub Date: 2023-02-27DOI: 10.1017/pab.2023.3
Erin M Dillon, Emma M Dunne, Tom M Womack, Miranta Kouvari, Ekaterina Larina, Jordan Ray Claytor, Angelina Ivkić, Mark Juhn, Pablo S Milla Carmona, Selina Viktor Robson, Anwesha Saha, Jaime A Villafaña, Michelle E Zill
Over the last 50 years, access to new data and analytical tools has expanded the study of analytical paleobiology, contributing to innovative analyses of biodiversity dynamics over Earth's history. Despite-or even spurred by-this growing availability of resources, analytical paleobiology faces deep-rooted obstacles that stem from the need for more equitable access to data and best practices to guide analyses of the fossil record. Recent progress has been accelerated by a collective push toward more collaborative, interdisciplinary, and open science, especially by early-career researchers. Here, we survey four challenges facing analytical paleobiology from an early-career perspective: (1) accounting for biases when interpreting the fossil record; (2) integrating fossil and modern biodiversity data; (3) building data science skills; and (4) increasing data accessibility and equity. We discuss recent efforts to address each challenge, highlight persisting barriers, and identify tools that have advanced analytical work. Given the inherent linkages between these challenges, we encourage discourse across disciplines to find common solutions. We also affirm the need for systemic changes that reevaluate how we conduct and share paleobiological research.
{"title":"Challenges and directions in analytical paleobiology.","authors":"Erin M Dillon, Emma M Dunne, Tom M Womack, Miranta Kouvari, Ekaterina Larina, Jordan Ray Claytor, Angelina Ivkić, Mark Juhn, Pablo S Milla Carmona, Selina Viktor Robson, Anwesha Saha, Jaime A Villafaña, Michelle E Zill","doi":"10.1017/pab.2023.3","DOIUrl":"10.1017/pab.2023.3","url":null,"abstract":"<p><p>Over the last 50 years, access to new data and analytical tools has expanded the study of analytical paleobiology, contributing to innovative analyses of biodiversity dynamics over Earth's history. Despite-or even spurred by-this growing availability of resources, analytical paleobiology faces deep-rooted obstacles that stem from the need for more equitable access to data and best practices to guide analyses of the fossil record. Recent progress has been accelerated by a collective push toward more collaborative, interdisciplinary, and open science, especially by early-career researchers. Here, we survey four challenges facing analytical paleobiology from an early-career perspective: (1) accounting for biases when interpreting the fossil record; (2) integrating fossil and modern biodiversity data; (3) building data science skills; and (4) increasing data accessibility and equity. We discuss recent efforts to address each challenge, highlight persisting barriers, and identify tools that have advanced analytical work. Given the inherent linkages between these challenges, we encourage discourse across disciplines to find common solutions. We also affirm the need for systemic changes that reevaluate how we conduct and share paleobiological research.</p>","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 3","pages":"377-393"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paleontologists have long stressed the need to know how sampling the fossil record might influence our knowledge of the evolution of life. Here, we combine fossil occurrences of North American marine invertebrates from the Paleobiology Database with lithologic data from Macrostrat to identify sampling patterns in carbonate and siliciclastic rocks. We aim to quantify temporal trends in sampling effort within and between lithologies, focusing on the proportion of total available volume that has been sampled (sampled fossiliferous proportion, here called κ). Results indicate that the sampled fossiliferous proportion was stable during the Paleozoic, and variable during the post-Paleozoic, but showed no systematic increase through time. Fossiliferous carbonate rocks are proportionally more sampled than siliciclastic rocks, with intervals where the carbonate κ is double the siliciclastic κ. Among possible explanations for the apparent oversampling of fossiliferous carbonate rocks, analyses suggest that barren units, taphonomic dissolution, or data entry errors cannot completely explain sampling patterns. Our results suggest that one of the important drivers might be that paleontologists publish taxonomic descriptions from carbonate rocks more frequently. The higher diversity in carbonate rocks might account for an ease in the description of unknown species and therefore a higher rate of published fossils. Finally, a strong effect in favor of carbonate rocks might distort our perception of diversity through time, even under commonly used standardization methods. Our results also confirm that previous descriptions of an increase in the proportion of sampled fossiliferous rocks over time were driven by the sampling of the nonmarine fossil record.
{"title":"Relative oversampling of carbonate rocks in the North American marine fossil record","authors":"Diego Balseiro, M. Powell","doi":"10.1017/pab.2023.16","DOIUrl":"https://doi.org/10.1017/pab.2023.16","url":null,"abstract":"\u0000 Paleontologists have long stressed the need to know how sampling the fossil record might influence our knowledge of the evolution of life. Here, we combine fossil occurrences of North American marine invertebrates from the Paleobiology Database with lithologic data from Macrostrat to identify sampling patterns in carbonate and siliciclastic rocks. We aim to quantify temporal trends in sampling effort within and between lithologies, focusing on the proportion of total available volume that has been sampled (sampled fossiliferous proportion, here called κ). Results indicate that the sampled fossiliferous proportion was stable during the Paleozoic, and variable during the post-Paleozoic, but showed no systematic increase through time. Fossiliferous carbonate rocks are proportionally more sampled than siliciclastic rocks, with intervals where the carbonate κ is double the siliciclastic κ. Among possible explanations for the apparent oversampling of fossiliferous carbonate rocks, analyses suggest that barren units, taphonomic dissolution, or data entry errors cannot completely explain sampling patterns. Our results suggest that one of the important drivers might be that paleontologists publish taxonomic descriptions from carbonate rocks more frequently. The higher diversity in carbonate rocks might account for an ease in the description of unknown species and therefore a higher rate of published fossils. Finally, a strong effect in favor of carbonate rocks might distort our perception of diversity through time, even under commonly used standardization methods. Our results also confirm that previous descriptions of an increase in the proportion of sampled fossiliferous rocks over time were driven by the sampling of the nonmarine fossil record.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44515472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lene Liebe Delsett, Nicholas Pyenson, Feiko Miedema, Øyvind Hammer
An abstract is not available for this content. As you have access to this content, full HTML content is provided on this page. A PDF of this content is also available in through the ‘Save PDF’ action button.
{"title":"Is the hyoid a constraint on innovation? A study in convergence driving feeding in fish-shaped marine tetrapods – CORRIGENDUM","authors":"Lene Liebe Delsett, Nicholas Pyenson, Feiko Miedema, Øyvind Hammer","doi":"10.1017/pab.2023.17","DOIUrl":"https://doi.org/10.1017/pab.2023.17","url":null,"abstract":"An abstract is not available for this content. As you have access to this content, full HTML content is provided on this page. A PDF of this content is also available in through the ‘Save PDF’ action button.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135717378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arindam Roy, M. Pittman, Thomas G. Kaye, E. Saitta
Melanin pigments are central to colors and patterns in modern vertebrate integuments, which inform upon ecological and behavioral strategies like crypsis, aposematism, and sociosexual selection. Over the last decade, melanin has emerged as a valuable tool for predicting color in exceptionally preserved fossil feathers and subsequent testing of paleobiological hypotheses in long-extinct dinosaurs and birds. Yet much remains to be learned about melanin stability, diagenetic alterations to melanin chemistry, and their implications for “paleocolor reconstruction.” Pressure–temperature maturation experiments with modern feathers offer a way to examine these topics but have mostly been conducted in closed-system capsules or open-system aluminum foil. Both methods have operational limitations and do not consider the filtering effect of porous sediment matrices on thermally labile chemical groups versus stable ones during natural fossilization. We use sediment-encased maturation to resolve this issue and demonstrate replication of organic preservation of melanin highly comparable to compression fossils. Our experiments, coupled with time-of-flight secondary ion mass spectrometry, show predictable volatilization of N/S-bearing molecules and increased melanin cross-linking with elevated temperatures. We also suggest that eumelanin is more stable compared with pheomelanin at higher temperatures, explaining why eumelanic colors (black, dark brown, iridescent) are better preserved in fossils than pheomelanic ones (reddish brown). Furthermore, we propose that proteins preferentially undergo hydrolysis more so than forming N-heterocycles in selectively open systems analogous to natural matrices. Thus, we conclude that melanin pigments and not diagenetically altered protein remnants are the key players in promoting fossilization of soft tissues like feathers.
{"title":"Sediment-encased pressure–temperature maturation experiments elucidate the impact of diagenesis on melanin-based fossil color and its paleobiological implications","authors":"Arindam Roy, M. Pittman, Thomas G. Kaye, E. Saitta","doi":"10.1017/pab.2023.11","DOIUrl":"https://doi.org/10.1017/pab.2023.11","url":null,"abstract":"\u0000 Melanin pigments are central to colors and patterns in modern vertebrate integuments, which inform upon ecological and behavioral strategies like crypsis, aposematism, and sociosexual selection. Over the last decade, melanin has emerged as a valuable tool for predicting color in exceptionally preserved fossil feathers and subsequent testing of paleobiological hypotheses in long-extinct dinosaurs and birds. Yet much remains to be learned about melanin stability, diagenetic alterations to melanin chemistry, and their implications for “paleocolor reconstruction.” Pressure–temperature maturation experiments with modern feathers offer a way to examine these topics but have mostly been conducted in closed-system capsules or open-system aluminum foil. Both methods have operational limitations and do not consider the filtering effect of porous sediment matrices on thermally labile chemical groups versus stable ones during natural fossilization. We use sediment-encased maturation to resolve this issue and demonstrate replication of organic preservation of melanin highly comparable to compression fossils. Our experiments, coupled with time-of-flight secondary ion mass spectrometry, show predictable volatilization of N/S-bearing molecules and increased melanin cross-linking with elevated temperatures. We also suggest that eumelanin is more stable compared with pheomelanin at higher temperatures, explaining why eumelanic colors (black, dark brown, iridescent) are better preserved in fossils than pheomelanic ones (reddish brown). Furthermore, we propose that proteins preferentially undergo hydrolysis more so than forming N-heterocycles in selectively open systems analogous to natural matrices. Thus, we conclude that melanin pigments and not diagenetically altered protein remnants are the key players in promoting fossilization of soft tissues like feathers.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42481830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Foramina of bones are beginning to yield more information about metabolic rates and activity levels of living and extinct species. This study investigates the relationship between estimated blood flow rate to the femur and body mass among cursorial birds extending back to the Late Cretaceous. Data from fossil foramina are compared with those of extant species, revealing similar scaling relationships for all cursorial birds and supporting crown bird–like terrestrial locomotor activity. Because the perfusion rate in long bones of birds is related to the metabolic cost of microfracture repair due to stresses applied during locomotion, as it is in mammals, this study estimates absolute blood flow rates from sizes of nutrient foramina located on the femur shafts. After differences in body mass and locomotor behaviors are accounted for, femoral bone blood flow rates in extinct species are similar to those of extant cursorial birds. Femoral robustness is generally greater in aquatic flightless birds than in terrestrial flightless and ground-dwelling flighted birds, suggesting that the morphology is shaped by life-history demands. Femoral robustness also increases in larger cursorial bird taxa, probably associated with their weight redistribution following evolutionary loss of the tail, which purportedly constrains femur length, aligns it more horizontally, and necessitates increased robustness in larger species.
{"title":"Blood flow rates to leg bones of extinct birds indicate high levels of cursorial locomotion","authors":"Qiaohui Hu, C. V. Miller, E. Snelling, R. Seymour","doi":"10.1017/pab.2023.14","DOIUrl":"https://doi.org/10.1017/pab.2023.14","url":null,"abstract":"Abstract Foramina of bones are beginning to yield more information about metabolic rates and activity levels of living and extinct species. This study investigates the relationship between estimated blood flow rate to the femur and body mass among cursorial birds extending back to the Late Cretaceous. Data from fossil foramina are compared with those of extant species, revealing similar scaling relationships for all cursorial birds and supporting crown bird–like terrestrial locomotor activity. Because the perfusion rate in long bones of birds is related to the metabolic cost of microfracture repair due to stresses applied during locomotion, as it is in mammals, this study estimates absolute blood flow rates from sizes of nutrient foramina located on the femur shafts. After differences in body mass and locomotor behaviors are accounted for, femoral bone blood flow rates in extinct species are similar to those of extant cursorial birds. Femoral robustness is generally greater in aquatic flightless birds than in terrestrial flightless and ground-dwelling flighted birds, suggesting that the morphology is shaped by life-history demands. Femoral robustness also increases in larger cursorial bird taxa, probably associated with their weight redistribution following evolutionary loss of the tail, which purportedly constrains femur length, aligns it more horizontally, and necessitates increased robustness in larger species.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"700 - 711"},"PeriodicalIF":2.7,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44950396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linking host plants to damage types in the fossil record of insect herbivory – CORRIGENDUM","authors":"Sandra R. Schachat, J. Payne, C. Boyce","doi":"10.1017/pab.2023.15","DOIUrl":"https://doi.org/10.1017/pab.2023.15","url":null,"abstract":"","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 1","pages":"374 - 375"},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47504532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01Epub Date: 2023-02-08DOI: 10.1017/pab.2022.40
Jaime A Villafaña, Marcelo M Rivadeneira, Catalina Pimiento, Jürgen Kriwet
Despite the rich fossil record of Neogene chondrichthyans (chimaeras, sharks, rays, and skates) from Europe, little is known about the macroevolutionary processes that generated their current diversity and geographical distribution. We compiled 4368 Neogene occurrences comprising 102 genera, 41 families, and 12 orders from four European regions (Atlantic, Mediterranean, North Sea, and Paratethys) and evaluated their diversification trajectories and paleobiogeographic patterns. In all regions analyzed, we found that generic richness increased during the early Miocene, then decreased sharply during the middle Miocene in the Paratethys, and moderately during the late Miocene and Pliocene in the Mediterranean and North Seas. Origination rates display the most significant pulses in the early Miocene in all regions. Extinction rate pulses varied across regions, with the Paratethys displaying the most significant pulses during the late Miocene and the Mediterranean and North Seas during the late Miocene and early Pliocene. Overall, up to 27% and 56% of the European Neogene genera are now globally and regionally extinct, respectively. The observed pulses of origination and extinction in the different regions coincide with warming and cooling events that occurred during the Neogene globally and regionally. Our study reveals complex diversity dynamics of Neogene chondrichthyans from Europe and their distinct biogeographic composition despite the multiple marine passages that connected the different marine regions during this time.
{"title":"Diversification trajectories and paleobiogeography of Neogene chondrichthyans from Europe.","authors":"Jaime A Villafaña, Marcelo M Rivadeneira, Catalina Pimiento, Jürgen Kriwet","doi":"10.1017/pab.2022.40","DOIUrl":"10.1017/pab.2022.40","url":null,"abstract":"<p><p>Despite the rich fossil record of Neogene chondrichthyans (chimaeras, sharks, rays, and skates) from Europe, little is known about the macroevolutionary processes that generated their current diversity and geographical distribution. We compiled 4368 Neogene occurrences comprising 102 genera, 41 families, and 12 orders from four European regions (Atlantic, Mediterranean, North Sea, and Paratethys) and evaluated their diversification trajectories and paleobiogeographic patterns. In all regions analyzed, we found that generic richness increased during the early Miocene, then decreased sharply during the middle Miocene in the Paratethys, and moderately during the late Miocene and Pliocene in the Mediterranean and North Seas. Origination rates display the most significant pulses in the early Miocene in all regions. Extinction rate pulses varied across regions, with the Paratethys displaying the most significant pulses during the late Miocene and the Mediterranean and North Seas during the late Miocene and early Pliocene. Overall, up to 27% and 56% of the European Neogene genera are now globally and regionally extinct, respectively. The observed pulses of origination and extinction in the different regions coincide with warming and cooling events that occurred during the Neogene globally and regionally. Our study reveals complex diversity dynamics of Neogene chondrichthyans from Europe and their distinct biogeographic composition despite the multiple marine passages that connected the different marine regions during this time.</p>","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"49 2","pages":"329-341"},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9969652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17eCollection Date: 2023-01-01DOI: 10.5812/ijpr-133868
Arezo Teymori, Shaya Mokhtari, Anna Sedaghat, Arash Mahboubi, Farzad Kobarfard
Breast cancer is a deadly disease with a high prevalence rate among females. Despite several treatments, scientists are still engaged in finding less invasive treatments for this disease. The cellular proliferation rate and cell viability survey are critical to assess the drug's effect on both normal and malignant cell populations. Indole derivatives are promising candidates for their cytotoxic effect causing on breast cancer cells; however, they are less toxic on normal cells. This study synthesized 23 novel 5-hydroxyindole-3-carboxylic acids and related esters featuring various linear, cyclic, and primary aromatic amines. The MTT assay indicated the cytotoxicity of all acid and ester derivatives against the MCF-7 cells with no significant cytotoxicity on normal human dermal fibroblasts cells. Compound 5d, an ester derivative possessing a 4-methoxy group, was the most potent compound, with a half-maximal effective concentration of 4.7 µM. Compounds 5a, 5d, and 5l bearing ester group in their structure demonstrated cytotoxicity values < 10 µM against the MCF-7 cell line and were safe for advanced screening.
{"title":"Design, Synthesis, and Investigation of Cytotoxic Effects of 5-Hydroxyindole-3-Carboxylic Acid and Ester Derivatives as Potential Anti-breast Cancer Agents.","authors":"Arezo Teymori, Shaya Mokhtari, Anna Sedaghat, Arash Mahboubi, Farzad Kobarfard","doi":"10.5812/ijpr-133868","DOIUrl":"10.5812/ijpr-133868","url":null,"abstract":"<p><p>Breast cancer is a deadly disease with a high prevalence rate among females. Despite several treatments, scientists are still engaged in finding less invasive treatments for this disease. The cellular proliferation rate and cell viability survey are critical to assess the drug's effect on both normal and malignant cell populations. Indole derivatives are promising candidates for their cytotoxic effect causing on breast cancer cells; however, they are less toxic on normal cells. This study synthesized 23 novel 5-hydroxyindole-3-carboxylic acids and related esters featuring various linear, cyclic, and primary aromatic amines. The MTT assay indicated the cytotoxicity of all acid and ester derivatives against the MCF-7 cells with no significant cytotoxicity on normal human dermal fibroblasts cells. Compound 5d, an ester derivative possessing a 4-methoxy group, was the most potent compound, with a half-maximal effective concentration of 4.7 µM. Compounds 5a, 5d, and 5l bearing ester group in their structure demonstrated cytotoxicity values < 10 µM against the MCF-7 cell line and were safe for advanced screening.</p>","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"19 1","pages":"e133868"},"PeriodicalIF":1.6,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78809230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}