首页 > 最新文献

Nuclear Physics B最新文献

英文 中文
Revisiting Weak Energy Condition and wormholes in Brans-Dicke gravity 重新审视布兰斯-迪克引力中的弱能量条件和虫洞
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-09-03 DOI: 10.1016/j.nuclphysb.2024.116669

It is known that the formation of a wormhole typically involves a violation of the Weak Energy Condition (WEC), but the reverse is not necessarily true. In the context of Brans-Dicke gravity, the generalized Campanelli-Lousto solution, which we shall unveil in this paper, demonstrates a WEC violation that coincides with the appearance of unbounded sheets of spacetime within the region where 0<r<rs. The emergence of a wormhole in the region where r>rs is thus only an indirect consequence of the WEC violation. Whereas the two regions, 0<r<rs and r>rs, in general are disconnected by physical singularities at r=rs, they are both part of the same mathematical solution, and their behavior can provide insights into the WEC, which is a mathematical property of the solution. Furthermore, we utilize the generalized Campanelli-Lousto solution to construct a Kruskal-Szekeres diagram, which exhibits a “gulf” sandwiched between the four quadrants in the diagram, a novel feature in Brans-Dicke gravity. Overall, our findings shed new light onto a complex interplay between the WEC and wormholes in the Brans-Dicke theory.

众所周知,虫洞的形成通常涉及对弱能量条件(WEC)的违反,但反之则不一定。在布兰斯-迪克引力的背景下,我们将在本文中揭示的广义坎帕内利-卢斯托(Campanelli-Lousto)解显示了一种弱能量条件(WEC)的违反,这种违反与 0<r<rs 区域内出现的无界时空片相吻合。因此,在r>rs所在区域出现虫洞只是违反WEC的间接结果。虽然0<r<rs和r>rs这两个区域在r=rs处因物理奇点而断开,但它们都是同一个数学解的一部分,它们的行为可以让我们深入了解作为解的数学属性的虫洞。此外,我们还利用广义坎帕内利-卢斯托解构建了克鲁斯卡尔-塞克斯图,该图显示了夹在图中四个象限之间的 "鸿沟",这是布兰斯-迪克引力的一个新特征。总之,我们的发现为布兰士-迪克理论中的WEC与虫洞之间复杂的相互作用提供了新的启示。
{"title":"Revisiting Weak Energy Condition and wormholes in Brans-Dicke gravity","authors":"","doi":"10.1016/j.nuclphysb.2024.116669","DOIUrl":"10.1016/j.nuclphysb.2024.116669","url":null,"abstract":"<div><p>It is known that the formation of a wormhole typically involves a violation of the Weak Energy Condition (WEC), but the reverse is not necessarily true. In the context of Brans-Dicke gravity, the <em>generalized</em> Campanelli-Lousto solution, which we shall unveil in this paper, demonstrates a WEC violation that coincides with the appearance of <em>unbounded</em> sheets of spacetime within the region where <span><math><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mtext>s</mtext></mrow></msub></math></span>. The emergence of a wormhole in the region where <span><math><mi>r</mi><mo>&gt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mtext>s</mtext></mrow></msub></math></span> is thus only an indirect consequence of the WEC violation. Whereas the two regions, <span><math><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mtext>s</mtext></mrow></msub></math></span> and <span><math><mi>r</mi><mo>&gt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mtext>s</mtext></mrow></msub></math></span>, in general are disconnected by <em>physical</em> singularities at <span><math><mi>r</mi><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mtext>s</mtext></mrow></msub></math></span>, they are both part of the same <em>mathematical</em> solution, and their behavior can provide insights into the WEC, which is a <em>mathematical</em> property of the solution. Furthermore, we utilize the generalized Campanelli-Lousto solution to construct a Kruskal-Szekeres diagram, which exhibits a “gulf” sandwiched between the four quadrants in the diagram, a novel feature in Brans-Dicke gravity. Overall, our findings shed new light onto a complex interplay between the WEC and wormholes in the Brans-Dicke theory.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002359/pdfft?md5=fbbdc1065846565ff94943e4d12e42fb&pid=1-s2.0-S0550321324002359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics 高阶量子修正对带电 BTZ 黑洞热力学的稳定效应
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-09-03 DOI: 10.1016/j.nuclphysb.2024.116672

In this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.

本文研究了加入高阶量子修正的静态带电 BTZ 黑洞的热力学性质和稳定性。推导出了熵修正、质量修正和亥姆霍兹自由能修正,揭示了黑洞热力学中量子效应与经典引力之间错综复杂的相互作用。对比热容的研究表明,高阶修正消除了低阶存在的不稳定性,从而稳定了系统。对范德瓦耳斯类等温线的分析表明,随着体积的减小,系统从高度可压缩连续过渡到几乎不可压缩,这与超临界流体的行为类似。值得注意的是,等温线没有表现出任何负压缩性区域,表明不存在不稳定性。此外,亥姆霍兹自由能作为体积函数的凸性证实了带电 BTZ 黑洞系统的稳定性。这些发现为了解三维黑洞复杂的热力学状况以及量子修正在塑造黑洞行为中的作用提供了宝贵的见解。
{"title":"Stabilizing effects of higher-order quantum corrections on charged BTZ black hole thermodynamics","authors":"","doi":"10.1016/j.nuclphysb.2024.116672","DOIUrl":"10.1016/j.nuclphysb.2024.116672","url":null,"abstract":"<div><p>In this paper, we study the thermodynamic properties and stability of static charged BTZ black holes with the inclusion of higher-order quantum corrections. The corrections to the entropy, mass, and Helmholtz free energy are derived, revealing the intricate interplay between quantum effects and classical gravitational forces in the context of black hole thermodynamics. The study of the specific heat capacity shows that higher-order corrections stabilize the system by removing the instabilities present at lower orders. The analysis of the van der Waals-like isotherms demonstrates the continuous transition from a highly compressible to an almost incompressible regime as the volume is decreased, akin to the behavior of supercritical fluids. Notably, the isotherms do not exhibit any regions of negative compressibility, indicating the absence of instabilities. Furthermore, the convexity of the Helmholtz free energy as a function of volume confirms the stability of the charged BTZ black hole system. These findings provide valuable insights into the complex thermodynamic landscape of three-dimensional black holes and the role of quantum corrections in shaping their behavior.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002384/pdfft?md5=e5b552aada771ae05dc03fb309917cfd&pid=1-s2.0-S0550321324002384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrable sigma model with generalized F structure, Yang-Baxter sigma model with generalized complex structure and multi-Yang-Baxter sigma model 具有广义 F 结构的可积分西格玛模型、具有广义复合结构的杨-巴克斯特西格玛模型和多杨-巴克斯特西格玛模型
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-09-03 DOI: 10.1016/j.nuclphysb.2024.116671

We construct an integrable sigma model with a generalized F structure, which involves a generalized Nijenhuis structure J satisfying J3=J. Utilizing the expression of the generalized complex structure on the metric Lie group manifold G in terms of operator relations on its Lie algebra g, we formulate a Yang-Baxter sigma model with a generalized complex structure. Additionally, we present multi-Yang-Baxter sigma models featuring two and three compatible Nijenhuis structures. Examples for each of these models are provided.

我们构建了一个具有广义 F 结构的可积分西格玛模型,它涉及满足 J3=-J 的广义尼延胡斯结构 J。利用广义复结构在度量烈群流形 G 上的表达式,即其烈代数 g 上的算子关系,我们提出了一个具有广义复结构的杨-巴克斯特西格玛模型。此外,我们还提出了多杨-巴克斯特西格玛模型,它具有两个和三个兼容的尼延胡斯结构。我们还提供了每个模型的示例。
{"title":"Integrable sigma model with generalized F structure, Yang-Baxter sigma model with generalized complex structure and multi-Yang-Baxter sigma model","authors":"","doi":"10.1016/j.nuclphysb.2024.116671","DOIUrl":"10.1016/j.nuclphysb.2024.116671","url":null,"abstract":"<div><p>We construct an integrable sigma model with a generalized <span><math><mi>F</mi></math></span> structure, which involves a generalized Nijenhuis structure <span><math><mi>J</mi></math></span> satisfying <span><math><msup><mrow><mi>J</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mo>−</mo><mi>J</mi></math></span>. Utilizing the expression of the generalized complex structure on the metric Lie group manifold <em>G</em> in terms of operator relations on its Lie algebra <span><math><mi>g</mi></math></span>, we formulate a Yang-Baxter sigma model with a generalized complex structure. Additionally, we present multi-Yang-Baxter sigma models featuring two and three compatible Nijenhuis structures. Examples for each of these models are provided.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002372/pdfft?md5=b11fed62dad4d217596d7079c9914fc1&pid=1-s2.0-S0550321324002372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras 利用克利福德代数方程求解杨-巴克斯特方程、四面体方程和高次单纯形方程
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-09-02 DOI: 10.1016/j.nuclphysb.2024.116664

Bethe Ansatz was discovered in 1932. Half a century later its algebraic structure was unearthed: Yang-Baxter equation was discovered, as well as its multidimensional generalizations [tetrahedron equation and d-simplex equations]. Here we describe a universal method to solve these equations using Clifford algebras. The Yang-Baxter equation (d=2), Zamolodchikov's tetrahedron equation (d=3) and the Bazhanov-Stroganov equation (d=4) are special cases. Our solutions form a linear space. This helps us to include spectral parameters. Potential applications are discussed.

贝特公式发现于 1932 年。半个世纪后,它的代数结构被发掘出来:发现了杨-巴克斯特方程及其多维广义方程 [四面体方程和 d-复数方程]。在此,我们介绍一种利用克利福德代数求解这些方程的通用方法。杨-巴克斯特方程(d=2)、扎莫洛奇科夫四面体方程(d=3)和巴扎诺夫-斯特罗加诺夫方程(d=4)都是特例。我们的解形成了一个线性空间。这有助于我们纳入光谱参数。讨论了潜在的应用。
{"title":"Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras","authors":"","doi":"10.1016/j.nuclphysb.2024.116664","DOIUrl":"10.1016/j.nuclphysb.2024.116664","url":null,"abstract":"<div><p>Bethe Ansatz was discovered in 1932. Half a century later its algebraic structure was unearthed: Yang-Baxter equation was discovered, as well as its multidimensional generalizations [tetrahedron equation and <em>d</em>-simplex equations]. Here we describe a universal method to solve these equations using Clifford algebras. The Yang-Baxter equation (<span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>), Zamolodchikov's tetrahedron equation (<span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>) and the Bazhanov-Stroganov equation (<span><math><mi>d</mi><mo>=</mo><mn>4</mn></math></span>) are special cases. Our solutions form a linear space. This helps us to include spectral parameters. Potential applications are discussed.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S055032132400230X/pdfft?md5=cacf76f9191ead08813e1b3c4b155908&pid=1-s2.0-S055032132400230X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single production of vectorlike quarks with charge 5/3 at the 14 TeV LHC 在 14 TeV 大型强子对撞机上单次产生带电荷 5/3 的矢量类夸克
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-30 DOI: 10.1016/j.nuclphysb.2024.116667

In a framework of the Standard Model (SM) simply extended by an SU(2) doublet (X,T) including a vectorlike X-quark (VLQ-X), with electric charge |QX|=5/3, we investigate the single production of the VLQ-X induced by the couplings between the VLQ-X with the first and the third generation quarks at the Large Hadron Collider (LHC) operating at s=14 TeV. The signal is searched in events including same-sign dileptons (electrons or muons), one b-tagged jet and missing energy, where the X quark is assumed to decay into a top quark and a W boson, both decaying leptonically. After a rapid simulation of signal and background events, the 95% CL exclusion limits and the 5σ discovery reach are respectively obtained at the LHC with an integrated luminosity of 300 and 3000 fb−1, respectively.

在标准模型(SM)简单扩展的 SU(2) 双重(X,T)框架内,包括电荷为 |QX|=5/3的矢量类 X 夸克(VLQ-X),我们研究了在 s=14 TeV 运行的大型强子对撞机(LHC)上,VLQ-X 与第一代和第三代夸克之间的耦合所诱发的 VLQ-X 的单次产生。该信号在包括同符号二重子(电子或μ介子)、一个b标记喷流和缺失能量的事件中进行搜索,其中X夸克被假定衰变为一个顶夸克和一个W玻色子,两者都以轻子方式衰变。在对信号和背景事件进行快速模拟之后,在大型强子对撞机上分别以 300 和 3000 fb-1 的综合光度获得了 95% CL 排除极限和 5σ 发现范围。
{"title":"Single production of vectorlike quarks with charge 5/3 at the 14 TeV LHC","authors":"","doi":"10.1016/j.nuclphysb.2024.116667","DOIUrl":"10.1016/j.nuclphysb.2024.116667","url":null,"abstract":"<div><p>In a framework of the Standard Model (SM) simply extended by an SU(2) doublet <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> including a vectorlike <em>X</em>-quark (VLQ-<em>X</em>), with electric charge <span><math><mo>|</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>|</mo><mo>=</mo><mn>5</mn><mo>/</mo><mn>3</mn></math></span>, we investigate the single production of the VLQ-<em>X</em> induced by the couplings between the VLQ-<em>X</em> with the first and the third generation quarks at the Large Hadron Collider (LHC) operating at <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>14</mn></math></span> TeV. The signal is searched in events including same-sign dileptons (electrons or muons), one <em>b</em>-tagged jet and missing energy, where the <em>X</em> quark is assumed to decay into a top quark and a W boson, both decaying leptonically. After a rapid simulation of signal and background events, the 95% CL exclusion limits and the 5<em>σ</em> discovery reach are respectively obtained at the LHC with an integrated luminosity of 300 and 3000 fb<sup>−1</sup>, respectively.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002335/pdfft?md5=9e2d0bb1363543f72f3c6413ffbe2408&pid=1-s2.0-S0550321324002335-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renormalon-based resummation of Bjorken polarised sum rule in holomorphic QCD 全形 QCD 中基于正负电子的比约肯极化和则重和
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-30 DOI: 10.1016/j.nuclphysb.2024.116668
<div><p>Approximate knowledge of the renormalon structure of the Bjorken polarised sum rule (BSR) <span><math><msubsup><mrow><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> leads to the corresponding BSR characteristic function that allows us to evaluate the leading-twist part of BSR. In our previous work <span><span>[1]</span></span>, this evaluation (resummation) was performed using perturbative QCD (pQCD) coupling <span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>≡</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>/</mo><mi>π</mi></math></span> in specific renormalisation schemes. In the present paper, we continue this work, by using instead holomorphic couplings [<span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>↦</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>] that have no Landau singularities and thus require, in contrast to the pQCD case, no regularisation of the resummation formula. The <span><math><mi>D</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>D</mi><mo>=</mo><mn>4</mn></math></span> terms are included in the Operator Product Expansion (OPE) of inelastic BSR, and fits are performed to the available experimental data in a specific interval <span><math><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>min</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>max</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span> where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>max</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>4.74</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We needed relatively high <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>min</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≈</mo><mn>1.7</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in the pQCD case since the pQCD coupling <span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> has Landau singularities at <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≲</mo><mn>1</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Now, when holomorphic (AQCD) couplings <span><math><mi>A</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are used, no such problems occur: for the 3<em>δ</em>AQCD and 2<em>δ</em>AQCD variants the preferred values are <span><math><msubsup><mrow><mi
比约肯极化和则(BSR)Γ‾1p-n(Q2)的重正子结构的近似知识导致了相应的 BSR 特征函数,它允许我们评估 BSR 的前导扭曲部分。在我们以前的工作[1]中,这种评估(求和)是使用特定重正化方案中的微扰 QCD(pQCD)耦合 a(Q2)≡αs(Q2)/π进行的。在本文中,我们继续这项工作,改用没有朗道奇点的全形耦合[a(Q2)↦A(Q2)],因此与pQCD情况相反,不需要正则化重和公式。D=2 和 D=4 项被包含在非弹性 BSR 的算子乘积展开(OPE)中,并在特定区间(Qmin2,Qmax2)内对现有实验数据进行拟合,其中 Qmax2=4.74GeV2 。在 pQCD 情况下,我们需要相对较高的 Qmin2≈1.7GeV2 ,因为 pQCD 耦合 a(Q2) 在 Q2≲1GeV2 时具有朗道奇点。现在,当使用全形(AQCD)耦合A(Q2)时,就不会出现这样的问题了:对于3δAQCD和2δAQCD变体,优选值是Qmin2≈0.6GeV2。由于 BSR 实验数据存在很大的不确定性,αs 的优选值一般无法明确提取。在αsMS-‾(MZ2)的固定值下,D=2 和 D=4残留参数的值在所有情况下都能确定,并具有相应的不确定性。
{"title":"Renormalon-based resummation of Bjorken polarised sum rule in holomorphic QCD","authors":"","doi":"10.1016/j.nuclphysb.2024.116668","DOIUrl":"10.1016/j.nuclphysb.2024.116668","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Approximate knowledge of the renormalon structure of the Bjorken polarised sum rule (BSR) &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; leads to the corresponding BSR characteristic function that allows us to evaluate the leading-twist part of BSR. In our previous work &lt;span&gt;&lt;span&gt;[1]&lt;/span&gt;&lt;/span&gt;, this evaluation (resummation) was performed using perturbative QCD (pQCD) coupling &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in specific renormalisation schemes. In the present paper, we continue this work, by using instead holomorphic couplings [&lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;↦&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;] that have no Landau singularities and thus require, in contrast to the pQCD case, no regularisation of the resummation formula. The &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; terms are included in the Operator Product Expansion (OPE) of inelastic BSR, and fits are performed to the available experimental data in a specific interval &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;4.74&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;GeV&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. We needed relatively high &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;mn&gt;1.7&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;GeV&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; in the pQCD case since the pQCD coupling &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; has Landau singularities at &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≲&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;GeV&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Now, when holomorphic (AQCD) couplings &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are used, no such problems occur: for the 3&lt;em&gt;δ&lt;/em&gt;AQCD and 2&lt;em&gt;δ&lt;/em&gt;AQCD variants the preferred values are &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002347/pdfft?md5=842e663826ba637998a3b3b4e949dc52&pid=1-s2.0-S0550321324002347-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the hidden-charm-hidden-strange tetraquark mass spectrum via the QCD sum rules 通过 QCD 和则分析隐和-隐奇异四夸克质量谱
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-30 DOI: 10.1016/j.nuclphysb.2024.116661

In the present work, we construct the diquark-antidiquark type four-quark currents to investigate the mass spectrum of the ground state hidden-charm-hidden-strange tetraquark states with the quantum numbers JPC=0++, 1+, 1++ and 2++ via the traditional QCD sum rules in a comprehensive way. We update old calculations, perform new calculations and analysis in a rigorous way, and take account of the net light-flavor SU(3) breaking effects in a consistent way. And we make more reasonable identifications for the X(3960), X(4140), X(4274), X(4500), X(4685) and X(4700) and supersede some old identifications. Furthermore, we consider our previous theoretical predictions, and make reasonable/suitable identifications of the new LHCb states hc(4000) and χc1(4010).

在本研究中,我们构建了二夸克-反夸克型四夸克电流,通过传统的QCD和则全面研究了量子数JPC=0++、1+-、1++和2++的基态隐-谐-隐-奇四夸克态的质量谱。我们更新了旧的计算,以严谨的方式进行了新的计算和分析,并以一致的方式考虑了净光味 SU(3) 破缺效应。我们对 X(3960)、X(4140)、X(4274)、X(4500)、X(4685)和 X(4700)进行了更合理的识别,并取代了一些旧的识别。此外,我们还考虑了以前的理论预测,并对新的 LHCb 状态 hc(4000) 和 χc1(4010)进行了合理/合适的鉴定。
{"title":"Analysis of the hidden-charm-hidden-strange tetraquark mass spectrum via the QCD sum rules","authors":"","doi":"10.1016/j.nuclphysb.2024.116661","DOIUrl":"10.1016/j.nuclphysb.2024.116661","url":null,"abstract":"<div><p>In the present work, we construct the diquark-antidiquark type four-quark currents to investigate the mass spectrum of the ground state hidden-charm-hidden-strange tetraquark states with the quantum numbers <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo><mo>−</mo></mrow></msup></math></span>, <span><math><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></math></span> via the traditional QCD sum rules in a comprehensive way. We update old calculations, perform new calculations and analysis in a rigorous way, and take account of the net light-flavor <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> breaking effects in a consistent way. And we make more reasonable identifications for the <span><math><mi>X</mi><mo>(</mo><mn>3960</mn><mo>)</mo></math></span>, <span><math><mi>X</mi><mo>(</mo><mn>4140</mn><mo>)</mo></math></span>, <span><math><mi>X</mi><mo>(</mo><mn>4274</mn><mo>)</mo></math></span>, <span><math><mi>X</mi><mo>(</mo><mn>4500</mn><mo>)</mo></math></span>, <span><math><mi>X</mi><mo>(</mo><mn>4685</mn><mo>)</mo></math></span> and <span><math><mi>X</mi><mo>(</mo><mn>4700</mn><mo>)</mo></math></span> and supersede some old identifications. Furthermore, we consider our previous theoretical predictions, and make reasonable/suitable identifications of the new LHCb states <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>4000</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>c</mi><mn>1</mn></mrow></msub><mo>(</mo><mn>4010</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S055032132400227X/pdfft?md5=f9daa39e36cacb33804a8ae1d5bb3ffd&pid=1-s2.0-S055032132400227X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimal type-I Dirac seesaw and leptogenesis under A4 modular invariance A4 模块不变性下的最小 I 型狄拉克跷跷板和轻子生成
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-28 DOI: 10.1016/j.nuclphysb.2024.116666

We present a Dirac mass model based on A4 modular symmetry within Type-I seesaw framework. This extension of Standard Model requires three right-handed neutrinos and three heavy Dirac fermions superfields, all singlet under SU(2)L symmetry. The scalar sector is extended by the inclusion of a SU(2)L singlet superfield, χ. Here, the modular symmetry plays a crucial role as the Yukawa couplings acquire modular forms, which are expressed in terms of Dedekind eta function η(τ). Therefore, the Yukawa couplings follow transformations akin to other matter fields, thereby obviating the necessity of additional flavon fields. The acquisition of vev by complex modulus τ leads to the breaking of A4 modular symmetry. We have obtained predictions on neutrino oscillation parameters, for example, the normal hierarchy for the neutrino mass spectrum. Furthermore, we find that heavy Dirac fermions, in our model, can decay to produce observed baryon asymmetry of the Universe through Dirac leptogenesis.

我们在 I 型跷跷板框架内提出了一个基于 A4 模块对称性的狄拉克质量模型。标准模型的这一扩展需要三个右手中微子和三个重狄拉克费米子超场,它们都是 SU(2)L 对称下的单子。标量部门通过加入一个 SU(2)L 单子超场 χ 得到扩展。在这里,模块对称性起着至关重要的作用,因为尤卡娃耦合获得了模块形式,用戴德金埃塔函数η(τ)表示。因此,尤卡娃耦合遵循与其他物质场类似的变换,从而无需额外的黄子场。通过复模量 τ 获取 vev 会导致 A4 模块对称性的破缺。我们获得了对中微子振荡参数的预测,例如中微子质谱的正常层次结构。此外,我们还发现,在我们的模型中,重狄拉克费米子可以通过狄拉克轻生衰变产生观测到的宇宙重子不对称性。
{"title":"Minimal type-I Dirac seesaw and leptogenesis under A4 modular invariance","authors":"","doi":"10.1016/j.nuclphysb.2024.116666","DOIUrl":"10.1016/j.nuclphysb.2024.116666","url":null,"abstract":"<div><p>We present a Dirac mass model based on <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry within Type-I seesaw framework. This extension of Standard Model requires three right-handed neutrinos and three heavy Dirac fermions superfields, all singlet under <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> symmetry. The scalar sector is extended by the inclusion of a <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> singlet superfield, <em>χ</em>. Here, the modular symmetry plays a crucial role as the Yukawa couplings acquire modular forms, which are expressed in terms of Dedekind eta function <span><math><mi>η</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>. Therefore, the Yukawa couplings follow transformations akin to other matter fields, thereby obviating the necessity of additional flavon fields. The acquisition of <em>vev</em> by complex modulus <em>τ</em> leads to the breaking of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry. We have obtained predictions on neutrino oscillation parameters, for example, the normal hierarchy for the neutrino mass spectrum. Furthermore, we find that heavy Dirac fermions, in our model, can decay to produce observed baryon asymmetry of the Universe through Dirac leptogenesis.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002323/pdfft?md5=cde8b6196aa22e8df5a2c85eed084c8a&pid=1-s2.0-S0550321324002323-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetization without spin: Effective Lagrangian of itinerant electrons 没有自旋的磁化巡回电子的有效拉格朗日
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-28 DOI: 10.1016/j.nuclphysb.2024.116663

In this paper, an effective Lagrangian of an itinerant electron system of finite density at a finite magnetic field is obtained. It includes a Chern-Simons term of electromagnetic potentials of lower-scale dimensions compared to those studied before. This term has an origin in the many-body wave function and a unique topological property that is independent of a spin degree of freedom. The coupling strength is proportional to ρeB, which is singular at B=0 for a constant charge density. The effective Lagrangian at a finite B represents the physical effects at B0 properly. A universal shift of the magnetic field known as the Slater-Pauling curve is obtained from the effective Lagrangian.

本文获得了有限磁场下有限密度巡回电子系统的有效拉格朗日。与之前的研究相比,它包含了一个尺度维度较低的电磁势的切尔-西蒙斯项。该项起源于多体波函数,具有独立于自旋自由度的独特拓扑特性。耦合强度与ρeB成正比,在电荷密度恒定的情况下,ρeB在B=0时是奇异的。有限 B 时的有效拉格朗日恰当地表示了 B≠0 时的物理效应。从有效拉格朗日中可以得到被称为斯莱特-保龄曲线的磁场普遍偏移。
{"title":"Magnetization without spin: Effective Lagrangian of itinerant electrons","authors":"","doi":"10.1016/j.nuclphysb.2024.116663","DOIUrl":"10.1016/j.nuclphysb.2024.116663","url":null,"abstract":"<div><p>In this paper, an effective Lagrangian of an itinerant electron system of finite density at a finite magnetic field is obtained. It includes a Chern-Simons term of electromagnetic potentials of lower-scale dimensions compared to those studied before. This term has an origin in the many-body wave function and a unique topological property that is independent of a spin degree of freedom. The coupling strength is proportional to <span><math><mfrac><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi><mi>B</mi></mrow></mfrac></math></span>, which is singular at <span><math><mi>B</mi><mo>=</mo><mn>0</mn></math></span> for a constant charge density. The effective Lagrangian at a finite <em>B</em> represents the physical effects at <span><math><mi>B</mi><mo>≠</mo><mn>0</mn></math></span> properly. A universal shift of the magnetic field known as the Slater-Pauling curve is obtained from the effective Lagrangian.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002293/pdfft?md5=29e112f1de1b1ce3b311b8bcfaabb079&pid=1-s2.0-S0550321324002293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetries of modified Dirac operators in supergravity flux backgrounds 超引力通量背景下修正狄拉克算子的对称性
IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-08-28 DOI: 10.1016/j.nuclphysb.2024.116665

Modifications of Dirac operators in supergravity flux backgrounds are considered. Modified spin curvature operators and squares of modified Dirac operators corresponding to Schrödinger-Lichnerowicz-like formulas are obtained for different types of flux modifications. Symmetry operators of modified massless and massive Dirac equations are found in terms of modified Killing-Yano and modified conformal Killing-Yano forms. Extra constraints for symmetry operators in terms of different types of fluxes and modified Killing-Yano forms are determined.

研究考虑了超引力通量背景下狄拉克算子的修正。针对不同类型的通量修正,得到了与薛定谔-李奇诺维茨类似公式相对应的修正自旋曲率算子和修正狄拉克算子的平方。用修正的基林-雅诺形式和修正的共形基林-雅诺形式找到了修正的无质量和大质量狄拉克方程的对称算子。根据不同类型的通量和修正的基林-雅诺形式确定了对称算子的额外约束。
{"title":"Symmetries of modified Dirac operators in supergravity flux backgrounds","authors":"","doi":"10.1016/j.nuclphysb.2024.116665","DOIUrl":"10.1016/j.nuclphysb.2024.116665","url":null,"abstract":"<div><p>Modifications of Dirac operators in supergravity flux backgrounds are considered. Modified spin curvature operators and squares of modified Dirac operators corresponding to Schrödinger-Lichnerowicz-like formulas are obtained for different types of flux modifications. Symmetry operators of modified massless and massive Dirac equations are found in terms of modified Killing-Yano and modified conformal Killing-Yano forms. Extra constraints for symmetry operators in terms of different types of fluxes and modified Killing-Yano forms are determined.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002311/pdfft?md5=93cf759d668d5e66a734d952c018dd5d&pid=1-s2.0-S0550321324002311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nuclear Physics B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1