Pub Date : 2025-07-07Epub Date: 2025-06-03DOI: 10.1085/jgp.202413683
Peter Hull, Angelika Lampert
Metaphorical language is ubiquitous throughout the life sciences, with, for example, molecules forming chains which define genetic blueprints for the development of cells and ultimately the gates in the channels forming the subject of this special issue. Indeed, metaphor is a fundamental component of scientific discourse and influences how science is both communicated and understood across all levels of expertise. This article, written for readers without a background in linguistics, first provides a brief introduction to the mechanisms of scientific metaphor and then illustrates its productive application to the sodium channel fast inactivation mechanism.
{"title":"Using metaphorical considerations to benefit research on the sodium channel fast inactivation mechanism.","authors":"Peter Hull, Angelika Lampert","doi":"10.1085/jgp.202413683","DOIUrl":"10.1085/jgp.202413683","url":null,"abstract":"<p><p>Metaphorical language is ubiquitous throughout the life sciences, with, for example, molecules forming chains which define genetic blueprints for the development of cells and ultimately the gates in the channels forming the subject of this special issue. Indeed, metaphor is a fundamental component of scientific discourse and influences how science is both communicated and understood across all levels of expertise. This article, written for readers without a background in linguistics, first provides a brief introduction to the mechanisms of scientific metaphor and then illustrates its productive application to the sodium channel fast inactivation mechanism.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-02-04DOI: 10.1085/jgp.202413610
Brent D Foy, Chris Dupont, Phillip V Walker, Kirsten Denman, Kathrin L Engisch, Mark M Rich
Patients with periodic paralysis have attacks of weakness precipitated by depolarization of muscle. Each form of periodic paralysis is associated with unique changes in serum K+ during attacks of weakness. In hypokalemic periodic paralysis (hypoKPP), the mutation-induced gating pore current causes weakness associated with low serum K+. In hyperkalemic periodic paralysis (hyperKPP), mutations increase a non-inactivating Na+ current (Na persistent or NaP), which causes weakness associated with elevation of extracellular K+. In Andersen-Tawil syndrome, mutations causing loss of Kir channel function cause weakness associated with either low or high K+. We developed a computer model to address two questions: (1) What mechanisms are responsible for the distinct K+ dependencies of muscle depolarization-induced weakness in the three forms of periodic paralysis? (2) Why does extracellular K+ become elevated during attacks of weakness in hyperKPP, reduced in hypoKPP, and both elevated and reduced in Andersen-Tawil syndrome? We experimentally tested the model assumptions about resting potential in normal K+ solution in hyperKPP and hypoKPP. Recreating the distinct K+ dependence of all three forms of periodic paralysis required including the K+ and voltage dependence of current through Kir channels, the extracellular K+ and intracellular Na+ dependence of the Na/K ATPase activity, and the distinct voltage dependencies of the gating pore current and NaP. A key factor determining whether muscle would depolarize was the direction of small net K+ and net Na+ fluxes, which altered ion concentrations over hours. Our findings may aid in development of novel therapy for diseases with dysregulation of muscle excitability.
{"title":"Mechanisms underlying the distinct K+ dependencies of periodic paralysis.","authors":"Brent D Foy, Chris Dupont, Phillip V Walker, Kirsten Denman, Kathrin L Engisch, Mark M Rich","doi":"10.1085/jgp.202413610","DOIUrl":"10.1085/jgp.202413610","url":null,"abstract":"<p><p>Patients with periodic paralysis have attacks of weakness precipitated by depolarization of muscle. Each form of periodic paralysis is associated with unique changes in serum K+ during attacks of weakness. In hypokalemic periodic paralysis (hypoKPP), the mutation-induced gating pore current causes weakness associated with low serum K+. In hyperkalemic periodic paralysis (hyperKPP), mutations increase a non-inactivating Na+ current (Na persistent or NaP), which causes weakness associated with elevation of extracellular K+. In Andersen-Tawil syndrome, mutations causing loss of Kir channel function cause weakness associated with either low or high K+. We developed a computer model to address two questions: (1) What mechanisms are responsible for the distinct K+ dependencies of muscle depolarization-induced weakness in the three forms of periodic paralysis? (2) Why does extracellular K+ become elevated during attacks of weakness in hyperKPP, reduced in hypoKPP, and both elevated and reduced in Andersen-Tawil syndrome? We experimentally tested the model assumptions about resting potential in normal K+ solution in hyperKPP and hypoKPP. Recreating the distinct K+ dependence of all three forms of periodic paralysis required including the K+ and voltage dependence of current through Kir channels, the extracellular K+ and intracellular Na+ dependence of the Na/K ATPase activity, and the distinct voltage dependencies of the gating pore current and NaP. A key factor determining whether muscle would depolarize was the direction of small net K+ and net Na+ fluxes, which altered ion concentrations over hours. Our findings may aid in development of novel therapy for diseases with dysregulation of muscle excitability.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-03-10DOI: 10.1085/jgp.202413690
Dalma Kellermayer, Cristina M Șulea, Hedvig Tordai, Kálmán Benke, Miklós Pólos, Bence Ágg, Roland Stengl, Máté Csonka, Tamás Radovits, Béla Merkely, Zoltán Szabolcs, Miklós Kellermayer, Balázs Kiss
Marfan syndrome (MFS) is an autosomal dominant disease caused by mutations in the gene (FBN1) of fibrillin-1, a major determinant of the extracellular matrix (ECM). Functional impairment in the cardiac left ventricle (LV) of these patients is usually a consequence of aortic valve disease. However, LV passive stiffness may also be affected by chronic changes in mechanical load and ECM dysfunction. Passive stiffness is determined by the giant sarcomeric protein titin that has two main cardiac splice isoforms: the shorter and stiffer N2B and the longer and more compliant N2BA. Their ratio is thought to reflect myocardial response to pathologies. Whether this ratio and titin's sarcomeric layout is altered in MFS is currently unknown. Here, we studied LV samples from MFS patients carrying FBN1 mutation, collected during aortic root replacement surgery. We found that the N2BA:N2B titin ratio was elevated, indicating a shift toward the more compliant isoform. However, there were no alterations in the total titin content compared with healthy humans based on literature data. Additionally, while the gross sarcomeric structure was unaltered, the M-band was more extended in the MFS sarcomere. We propose that the elevated N2BA:N2B titin ratio reflects a general adaptation mechanism to the increased volume overload resulting from the valvular disease and the direct ECM disturbances so as to reduce myocardial passive stiffness and maintain diastolic function in MFS.
{"title":"Marfan syndrome cardiomyocytes show excess of titin isoform N2BA and extended sarcomeric M-band.","authors":"Dalma Kellermayer, Cristina M Șulea, Hedvig Tordai, Kálmán Benke, Miklós Pólos, Bence Ágg, Roland Stengl, Máté Csonka, Tamás Radovits, Béla Merkely, Zoltán Szabolcs, Miklós Kellermayer, Balázs Kiss","doi":"10.1085/jgp.202413690","DOIUrl":"10.1085/jgp.202413690","url":null,"abstract":"<p><p>Marfan syndrome (MFS) is an autosomal dominant disease caused by mutations in the gene (FBN1) of fibrillin-1, a major determinant of the extracellular matrix (ECM). Functional impairment in the cardiac left ventricle (LV) of these patients is usually a consequence of aortic valve disease. However, LV passive stiffness may also be affected by chronic changes in mechanical load and ECM dysfunction. Passive stiffness is determined by the giant sarcomeric protein titin that has two main cardiac splice isoforms: the shorter and stiffer N2B and the longer and more compliant N2BA. Their ratio is thought to reflect myocardial response to pathologies. Whether this ratio and titin's sarcomeric layout is altered in MFS is currently unknown. Here, we studied LV samples from MFS patients carrying FBN1 mutation, collected during aortic root replacement surgery. We found that the N2BA:N2B titin ratio was elevated, indicating a shift toward the more compliant isoform. However, there were no alterations in the total titin content compared with healthy humans based on literature data. Additionally, while the gross sarcomeric structure was unaltered, the M-band was more extended in the MFS sarcomere. We propose that the elevated N2BA:N2B titin ratio reflects a general adaptation mechanism to the increased volume overload resulting from the valvular disease and the direct ECM disturbances so as to reduce myocardial passive stiffness and maintain diastolic function in MFS.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-03-06DOI: 10.1085/jgp.202413543
Morris Vysma, James S Welsh, Derek R Laver
Integrating cellular sarcoplasmic reticulum (SR) Ca2+ release with the known Ca2+ activation properties of RyR2s remains challenging. The sharp increase in SR Ca2+ permeability above a threshold SR luminal [Ca2+] is not reflected in RyR2 kinetics from single-channel studies. Additionally, the current paradigm that global Ca2+ release (Ca2+ waves) arises from interacting local events (Ca2+ sparks) faces a key issue that these events rarely activate neighboring sites. We present a multiscale model that reproduces Ca2+ sparks and waves in skinned ventricular myocytes using experimentally validated RyR2 kinetics. The model spans spatial domains from 10-8 to 10-4 m and timescales from 10-6 to 10 s. Ca2+ release sites are distributed in cubic voxels (0.25-µm sides) informed by super-resolution micrographs. We use parallel computing to calculate Ca2+ transport, diffusion, and buffering. Substantial increases in SR Ca2+ release occur, and Ca2+ waves initiate when Ca2+ sparks become prolonged above a threshold SR [Ca2+]. These prolonged events (Ca2+ embers) are much more likely than Ca2+ sparks to activate release from neighboring sites and accumulate increases in cytoplasmic [Ca2+] along with an associated fall in Ca2+ buffering power. This primes the cytoplasm for Ca2+-induced Ca2+ release (CICR) that produces Ca2+ waves. Thus, Ca2+ ember formation and CICR are both essential for initiation and propagation of Ca2+ waves. Cell architecture, along with the differential effects of RyR2 opening and closing rates, collectively determines the SR [Ca2+] threshold for Ca2+ embers, waves, and the phenomenon of store overload-induced Ca2+ release.
{"title":"Novel Ca2+ wave mechanisms in cardiac myocytes revealed by multiscale Ca2+ release model.","authors":"Morris Vysma, James S Welsh, Derek R Laver","doi":"10.1085/jgp.202413543","DOIUrl":"10.1085/jgp.202413543","url":null,"abstract":"<p><p>Integrating cellular sarcoplasmic reticulum (SR) Ca2+ release with the known Ca2+ activation properties of RyR2s remains challenging. The sharp increase in SR Ca2+ permeability above a threshold SR luminal [Ca2+] is not reflected in RyR2 kinetics from single-channel studies. Additionally, the current paradigm that global Ca2+ release (Ca2+ waves) arises from interacting local events (Ca2+ sparks) faces a key issue that these events rarely activate neighboring sites. We present a multiscale model that reproduces Ca2+ sparks and waves in skinned ventricular myocytes using experimentally validated RyR2 kinetics. The model spans spatial domains from 10-8 to 10-4 m and timescales from 10-6 to 10 s. Ca2+ release sites are distributed in cubic voxels (0.25-µm sides) informed by super-resolution micrographs. We use parallel computing to calculate Ca2+ transport, diffusion, and buffering. Substantial increases in SR Ca2+ release occur, and Ca2+ waves initiate when Ca2+ sparks become prolonged above a threshold SR [Ca2+]. These prolonged events (Ca2+ embers) are much more likely than Ca2+ sparks to activate release from neighboring sites and accumulate increases in cytoplasmic [Ca2+] along with an associated fall in Ca2+ buffering power. This primes the cytoplasm for Ca2+-induced Ca2+ release (CICR) that produces Ca2+ waves. Thus, Ca2+ ember formation and CICR are both essential for initiation and propagation of Ca2+ waves. Cell architecture, along with the differential effects of RyR2 opening and closing rates, collectively determines the SR [Ca2+] threshold for Ca2+ embers, waves, and the phenomenon of store overload-induced Ca2+ release.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-02-21DOI: 10.1085/jgp.202513766
Michael L Jennings
The article by Lewis et al. (https://doi.org/10.1085/jgp.202413709) in this issue of JGP describes the use of single-molecule fluorescence polarization microscopy to obtain estimates of all the rate constants for transitions in the catalytic cycle of AdiC, a bacterial transporter for arginine and agmatine that has been believed to be a 1:1 exchanger.
{"title":"A complete set of rate constants for a transporter's catalytic cycle.","authors":"Michael L Jennings","doi":"10.1085/jgp.202513766","DOIUrl":"10.1085/jgp.202513766","url":null,"abstract":"<p><p>The article by Lewis et al. (https://doi.org/10.1085/jgp.202413709) in this issue of JGP describes the use of single-molecule fluorescence polarization microscopy to obtain estimates of all the rate constants for transitions in the catalytic cycle of AdiC, a bacterial transporter for arginine and agmatine that has been believed to be a 1:1 exchanger.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143469927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-03-19DOI: 10.1085/jgp.202513783
Lawrence Salkoff
Studies of potassium channel evolution from the Jegla group contribute valuable insights into the evolution of complexity in electrical signaling and the conservation and repurposing of key molecular components throughout evolutionary history.
{"title":"How the Blind Watchmaker messed around with potassium channels.","authors":"Lawrence Salkoff","doi":"10.1085/jgp.202513783","DOIUrl":"10.1085/jgp.202513783","url":null,"abstract":"<p><p>Studies of potassium channel evolution from the Jegla group contribute valuable insights into the evolution of complexity in electrical signaling and the conservation and repurposing of key molecular components throughout evolutionary history.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-03-18DOI: 10.1085/jgp.202413740
Benjamin T Simonson, Zhaoyang Jiang, Joseph F Ryan, Timothy Jegla
The ctenophore species Mnemiopsis leidyi is known to have a large set of voltage-gated K+ channels, but little is known about the functional diversity of these channels or their evolutionary history in other ctenophore species. Here, we searched the genomes of two additional ctenophore species, Beroe ovata and Hormiphora californensis, for voltage-gated K+ channels and functionally expressed a subset of M. leidyi channels. We found that the last common ancestor of these three disparate ctenophore lineages probably had at least 33 voltage-gated K+ channels. Two of these genes belong to the EAG family, and the remaining 31 belong to the Shaker family and form a single clade within the animal/choanoflagellate Shaker phylogeny. We additionally found evidence for 10 of these Shaker channels in a transcriptome of the early branching ctenophore lineage Euplokamis dunlapae, suggesting that the diversification of these channels was already underway early in ctenophore evolution. We functionally expressed 16 Mnemiopsis Shakers and found that they encode a diverse array of voltage-gated K+ conductances with functional orthologs for many classic Shaker family subtypes found in cnidarians and bilaterians. Analysis of Mnemiopsis transcriptome data show these 16 Shaker channels are expressed in a wide variety of cell types, including neurons, muscle, comb cells, and colloblasts. Ctenophores therefore appear to have independently evolved much of the voltage-gated K+ channel diversity that is shared between cnidarians and bilaterians.
{"title":"Ctenophores and parahoxozoans independently evolved functionally diverse voltage-gated K+ channels.","authors":"Benjamin T Simonson, Zhaoyang Jiang, Joseph F Ryan, Timothy Jegla","doi":"10.1085/jgp.202413740","DOIUrl":"10.1085/jgp.202413740","url":null,"abstract":"<p><p>The ctenophore species Mnemiopsis leidyi is known to have a large set of voltage-gated K+ channels, but little is known about the functional diversity of these channels or their evolutionary history in other ctenophore species. Here, we searched the genomes of two additional ctenophore species, Beroe ovata and Hormiphora californensis, for voltage-gated K+ channels and functionally expressed a subset of M. leidyi channels. We found that the last common ancestor of these three disparate ctenophore lineages probably had at least 33 voltage-gated K+ channels. Two of these genes belong to the EAG family, and the remaining 31 belong to the Shaker family and form a single clade within the animal/choanoflagellate Shaker phylogeny. We additionally found evidence for 10 of these Shaker channels in a transcriptome of the early branching ctenophore lineage Euplokamis dunlapae, suggesting that the diversification of these channels was already underway early in ctenophore evolution. We functionally expressed 16 Mnemiopsis Shakers and found that they encode a diverse array of voltage-gated K+ conductances with functional orthologs for many classic Shaker family subtypes found in cnidarians and bilaterians. Analysis of Mnemiopsis transcriptome data show these 16 Shaker channels are expressed in a wide variety of cell types, including neurons, muscle, comb cells, and colloblasts. Ctenophores therefore appear to have independently evolved much of the voltage-gated K+ channel diversity that is shared between cnidarians and bilaterians.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143658984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-03-07DOI: 10.1085/jgp.202413693
Lucian Medrihan, Margarete G Knudsen, Tatiana Ferraro, Pedro Del Cioppo Vasques, Yevgeniy Romin, Sho Fujisawa, Paul Greengard, Ana Milosevic
The cholinergic interneurons (ChIs) of the nucleus accumbens (NAc) have a critical role in the activity of this region, specifically in the context of major depressive disorder. To understand the circuitry regulating this behavior, we sought to determine the areas that directly project to these interneurons by utilizing the monosynaptic cell-specific tracing technique. Mapping showed monosynaptic projections that are exclusive to NAc ChIs. To determine if some of these projections are altered in a depression mouse model, we used mice that do not express the calcium-binding protein p11 specifically in ChIs (ChAT-p11 cKO) and display a depressive-like phenotype. Our data demonstrated that while the overall projection areas remain similar between wild type and ChAT-p11 cKO mice, the number of projections from the ventral hippocampus (vHIP) is significantly reduced in the ChAT-p11 cKO mice. Furthermore, using optogenetics and electrophysiology we showed that glutamatergic projections from vHIP to NAc ChIs are severely altered in mutant mice. These results show that specific alterations in the circuitry of the accumbal ChIs could play an important role in the regulation of depressive-like behavior, reward-seeking behavior in addictions, or psychiatric symptoms in neurodegenerative diseases.
{"title":"Projections from ventral hippocampus to nucleus accumbens' cholinergic neurons are altered in depression.","authors":"Lucian Medrihan, Margarete G Knudsen, Tatiana Ferraro, Pedro Del Cioppo Vasques, Yevgeniy Romin, Sho Fujisawa, Paul Greengard, Ana Milosevic","doi":"10.1085/jgp.202413693","DOIUrl":"10.1085/jgp.202413693","url":null,"abstract":"<p><p>The cholinergic interneurons (ChIs) of the nucleus accumbens (NAc) have a critical role in the activity of this region, specifically in the context of major depressive disorder. To understand the circuitry regulating this behavior, we sought to determine the areas that directly project to these interneurons by utilizing the monosynaptic cell-specific tracing technique. Mapping showed monosynaptic projections that are exclusive to NAc ChIs. To determine if some of these projections are altered in a depression mouse model, we used mice that do not express the calcium-binding protein p11 specifically in ChIs (ChAT-p11 cKO) and display a depressive-like phenotype. Our data demonstrated that while the overall projection areas remain similar between wild type and ChAT-p11 cKO mice, the number of projections from the ventral hippocampus (vHIP) is significantly reduced in the ChAT-p11 cKO mice. Furthermore, using optogenetics and electrophysiology we showed that glutamatergic projections from vHIP to NAc ChIs are severely altered in mutant mice. These results show that specific alterations in the circuitry of the accumbal ChIs could play an important role in the regulation of depressive-like behavior, reward-seeking behavior in addictions, or psychiatric symptoms in neurodegenerative diseases.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-04-16DOI: 10.1085/jgp.202513804
Ben Short
In a new JGP study (Thoreson et al. https://doi.org/10.1085/jgp.202413746), anatomically realistic simulations reveal how the complex architecture of rod synapses influences glutamate dynamics and postsynaptic responses.
{"title":"A realistic look at rod synapses.","authors":"Ben Short","doi":"10.1085/jgp.202513804","DOIUrl":"https://doi.org/10.1085/jgp.202513804","url":null,"abstract":"<p><p>In a new JGP study (Thoreson et al. https://doi.org/10.1085/jgp.202413746), anatomically realistic simulations reveal how the complex architecture of rod synapses influences glutamate dynamics and postsynaptic responses.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-05Epub Date: 2025-02-20DOI: 10.1085/jgp.202413709
John H Lewis, Yufeng Zhou, Zhe Lu
To understand the mechanism underlying the ability of individual AdiC molecules to transport arginine and agmatine, we used a recently developed high-resolution single-molecule fluorescence-polarization microscopy method to investigate conformation-specific changes in the emission polarization of a bifunctional fluorophore attached to an AdiC molecule. With this capability, we resolved AdiC's four conformations characterized by distinct spatial orientations in the absence or presence of the two substrates, and furthermore, each conformation's two energetic states, totaling 24 states. From the lifetimes of individual states and state-to-state transition probabilities, we determined 60 rate constants characterizing the transitions and 4 KD values characterizing the interactions of AdiC's two sides with arginine and agmatine, quantitatively defining a 24-state model. This model satisfactorily predicts the observed Michaelis-Menten behaviors of AdiC. With the acquired temporal information and existing structural information, we illustrated how to build an experiment-based integrative 4D model to capture and exhibit the complex spatiotemporal mechanisms underlying facilitated transport of substrates. However, inconsistent with what is expected from the prevailing hypothesis that AdiC is a 1:1 exchanger, all observed conformations transitioned among themselves with or without the presence of substrates. To corroborate this unexpected finding, we performed radioactive flux assays and found that the results are also incompatible with the hypothesis. As a technical advance, we showed that a monofunctional and the standard bifunctional fluorophore labels report comparable spatial orientation information defined in a local frame of reference. Here, the successful determination of the complex conformation-kinetic mechanism of AdiC demonstrates the unprecedented resolving power of the present microscopy method.
{"title":"Examination of conformational dynamics of AdiC transporter with fluorescence-polarization microscopy.","authors":"John H Lewis, Yufeng Zhou, Zhe Lu","doi":"10.1085/jgp.202413709","DOIUrl":"10.1085/jgp.202413709","url":null,"abstract":"<p><p>To understand the mechanism underlying the ability of individual AdiC molecules to transport arginine and agmatine, we used a recently developed high-resolution single-molecule fluorescence-polarization microscopy method to investigate conformation-specific changes in the emission polarization of a bifunctional fluorophore attached to an AdiC molecule. With this capability, we resolved AdiC's four conformations characterized by distinct spatial orientations in the absence or presence of the two substrates, and furthermore, each conformation's two energetic states, totaling 24 states. From the lifetimes of individual states and state-to-state transition probabilities, we determined 60 rate constants characterizing the transitions and 4 KD values characterizing the interactions of AdiC's two sides with arginine and agmatine, quantitatively defining a 24-state model. This model satisfactorily predicts the observed Michaelis-Menten behaviors of AdiC. With the acquired temporal information and existing structural information, we illustrated how to build an experiment-based integrative 4D model to capture and exhibit the complex spatiotemporal mechanisms underlying facilitated transport of substrates. However, inconsistent with what is expected from the prevailing hypothesis that AdiC is a 1:1 exchanger, all observed conformations transitioned among themselves with or without the presence of substrates. To corroborate this unexpected finding, we performed radioactive flux assays and found that the results are also incompatible with the hypothesis. As a technical advance, we showed that a monofunctional and the standard bifunctional fluorophore labels report comparable spatial orientation information defined in a local frame of reference. Here, the successful determination of the complex conformation-kinetic mechanism of AdiC demonstrates the unprecedented resolving power of the present microscopy method.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}