Pub Date : 2021-06-15DOI: 10.1007/s10827-022-00819-7
R. F. Pena, H. Rotstein
{"title":"Oscillations and variability in neuronal systems: interplay of autonomous transient dynamics and fast deterministic fluctuations","authors":"R. F. Pena, H. Rotstein","doi":"10.1007/s10827-022-00819-7","DOIUrl":"https://doi.org/10.1007/s10827-022-00819-7","url":null,"abstract":"","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"50 1","pages":"331 - 355"},"PeriodicalIF":1.2,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46253933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-02-02DOI: 10.1007/s10827-020-00775-0
Jan Karbowski
Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions, learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron's firing rate on synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights, and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise, such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise level and presynaptic firing.
{"title":"Energetics of stochastic BCM type synaptic plasticity and storing of accurate information.","authors":"Jan Karbowski","doi":"10.1007/s10827-020-00775-0","DOIUrl":"https://doi.org/10.1007/s10827-020-00775-0","url":null,"abstract":"<p><p>Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions, learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron's firing rate on synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights, and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise, such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise level and presynaptic firing.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"71-106"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-020-00775-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25322954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-01-28DOI: 10.1007/s10827-020-00770-5
Jonathan Platkiewicz, Zachary Saccomano, Sam McKenzie, Daniel English, Asohan Amarasingham
Observations of finely-timed spike relationships in population recordings have been used to support partial reconstruction of neural microcircuit diagrams. In this approach, fine-timescale components of paired spike train interactions are isolated and subsequently attributed to synaptic parameters. Recent perturbation studies strengthen the case for such an inference, yet the complete set of measurements needed to calibrate statistical models is unavailable. To address this gap, we study features of pairwise spiking in a large-scale in vivo dataset where presynaptic neurons were explicitly decoupled from network activity by juxtacellular stimulation. We then construct biophysical models of paired spike trains to reproduce the observed phenomenology of in vivo monosynaptic interactions, including both fine-timescale spike-spike correlations and firing irregularity. A key characteristic of these models is that the paired neurons are coupled by rapidly-fluctuating background inputs. We quantify a monosynapse's causal effect by comparing the postsynaptic train with its counterfactual, when the monosynapse is removed. Subsequently, we develop statistical techniques for estimating this causal effect from the pre- and post-synaptic spike trains. A particular focus is the justification and application of a nonparametric separation of timescale principle to implement synaptic inference. Using simulated data generated from the biophysical models, we characterize the regimes in which the estimators accurately identify the monosynaptic effect. A secondary goal is to initiate a critical exploration of neurostatistical assumptions in terms of biophysical mechanisms, particularly with regards to the challenging but arguably fundamental issue of fast, unobservable nonstationarities in background dynamics.
{"title":"Monosynaptic inference via finely-timed spikes.","authors":"Jonathan Platkiewicz, Zachary Saccomano, Sam McKenzie, Daniel English, Asohan Amarasingham","doi":"10.1007/s10827-020-00770-5","DOIUrl":"10.1007/s10827-020-00770-5","url":null,"abstract":"<p><p>Observations of finely-timed spike relationships in population recordings have been used to support partial reconstruction of neural microcircuit diagrams. In this approach, fine-timescale components of paired spike train interactions are isolated and subsequently attributed to synaptic parameters. Recent perturbation studies strengthen the case for such an inference, yet the complete set of measurements needed to calibrate statistical models is unavailable. To address this gap, we study features of pairwise spiking in a large-scale in vivo dataset where presynaptic neurons were explicitly decoupled from network activity by juxtacellular stimulation. We then construct biophysical models of paired spike trains to reproduce the observed phenomenology of in vivo monosynaptic interactions, including both fine-timescale spike-spike correlations and firing irregularity. A key characteristic of these models is that the paired neurons are coupled by rapidly-fluctuating background inputs. We quantify a monosynapse's causal effect by comparing the postsynaptic train with its counterfactual, when the monosynapse is removed. Subsequently, we develop statistical techniques for estimating this causal effect from the pre- and post-synaptic spike trains. A particular focus is the justification and application of a nonparametric separation of timescale principle to implement synaptic inference. Using simulated data generated from the biophysical models, we characterize the regimes in which the estimators accurately identify the monosynaptic effect. A secondary goal is to initiate a critical exploration of neurostatistical assumptions in terms of biophysical mechanisms, particularly with regards to the challenging but arguably fundamental issue of fast, unobservable nonstationarities in background dynamics.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"131-157"},"PeriodicalIF":1.5,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38869857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-04-06DOI: 10.1007/s10827-021-00782-9
Won J Sohn, Terence D Sanger
The principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This type of partially-reversible impairment in motor control by early brain injury bears a resemblance to the experience-dependent plastic acquisition and modification of neuronal response selectivity in the visual cortex. Previously, such mechanism was modeled within the framework of BCM (Bienenstock-Cooper-Munro) theory, a rate-based synaptic modification theory. Here, we demonstrate a minimally complex yet sufficient neural network model which provides a fundamental explanation for inter-hemispheric competition using a simplified spike-based model of information transmission and plasticity. We emulate the restoration of function in hemiplegic CP by simulating the competition between cells of the ipsilateral and contralateral corticospinal tracts. We use a high-speed hardware neural simulation to provide realistic numbers of spikes and realistic magnitudes of synaptic modification. We demonstrate that the phenomenon of constraint-induced partial reversal of hemiplegia can be modeled by simplified neural descending tracts with 2 layers of spiking neurons and synapses with spike-timing-dependent plasticity (STDP). We further demonstrate that persistent hemiplegia following unilateral cortical inactivation or deprivation is predicted by the STDP-based model but is inconsistent with BCM model. Although our model is a highly simplified and limited representation of the corticospinal system, it offers an explanation of how constraint as an intervention can help the system to escape from a suboptimal solution. This is a display of an emergent phenomenon from the synaptic competition.
{"title":"Constraint-induced intervention as an emergent phenomenon from synaptic competition in biological systems.","authors":"Won J Sohn, Terence D Sanger","doi":"10.1007/s10827-021-00782-9","DOIUrl":"https://doi.org/10.1007/s10827-021-00782-9","url":null,"abstract":"<p><p>The principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This type of partially-reversible impairment in motor control by early brain injury bears a resemblance to the experience-dependent plastic acquisition and modification of neuronal response selectivity in the visual cortex. Previously, such mechanism was modeled within the framework of BCM (Bienenstock-Cooper-Munro) theory, a rate-based synaptic modification theory. Here, we demonstrate a minimally complex yet sufficient neural network model which provides a fundamental explanation for inter-hemispheric competition using a simplified spike-based model of information transmission and plasticity. We emulate the restoration of function in hemiplegic CP by simulating the competition between cells of the ipsilateral and contralateral corticospinal tracts. We use a high-speed hardware neural simulation to provide realistic numbers of spikes and realistic magnitudes of synaptic modification. We demonstrate that the phenomenon of constraint-induced partial reversal of hemiplegia can be modeled by simplified neural descending tracts with 2 layers of spiking neurons and synapses with spike-timing-dependent plasticity (STDP). We further demonstrate that persistent hemiplegia following unilateral cortical inactivation or deprivation is predicted by the STDP-based model but is inconsistent with BCM model. Although our model is a highly simplified and limited representation of the corticospinal system, it offers an explanation of how constraint as an intervention can help the system to escape from a suboptimal solution. This is a display of an emergent phenomenon from the synaptic competition.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"175-188"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-021-00782-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25566260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-04-07DOI: 10.1007/s10827-020-00774-1
Lorenzo Chicchi, Gloria Cecchini, Ihusan Adam, Giuseppe de Vito, Roberto Livi, Francesco Saverio Pavone, Ludovico Silvestri, Lapo Turrini, Francesco Vanzi, Duccio Fanelli
An inverse procedure is developed and tested to recover functional and structural information from global signals of brains activity. The method assumes a leaky-integrate and fire model with excitatory and inhibitory neurons, coupled via a directed network. Neurons are endowed with a heterogenous current value, which sets their associated dynamical regime. By making use of a heterogenous mean-field approximation, the method seeks to reconstructing from global activity patterns the distribution of in-coming degrees, for both excitatory and inhibitory neurons, as well as the distribution of the assigned currents. The proposed inverse scheme is first validated against synthetic data. Then, time-lapse acquisitions of a zebrafish larva recorded with a two-photon light sheet microscope are used as an input to the reconstruction algorithm. A power law distribution of the in-coming connectivity of the excitatory neurons is found. Local degree distributions are also computed by segmenting the whole brain in sub-regions traced from annotated atlas.
{"title":"Reconstruction scheme for excitatory and inhibitory dynamics with quenched disorder: application to zebrafish imaging.","authors":"Lorenzo Chicchi, Gloria Cecchini, Ihusan Adam, Giuseppe de Vito, Roberto Livi, Francesco Saverio Pavone, Ludovico Silvestri, Lapo Turrini, Francesco Vanzi, Duccio Fanelli","doi":"10.1007/s10827-020-00774-1","DOIUrl":"https://doi.org/10.1007/s10827-020-00774-1","url":null,"abstract":"<p><p>An inverse procedure is developed and tested to recover functional and structural information from global signals of brains activity. The method assumes a leaky-integrate and fire model with excitatory and inhibitory neurons, coupled via a directed network. Neurons are endowed with a heterogenous current value, which sets their associated dynamical regime. By making use of a heterogenous mean-field approximation, the method seeks to reconstructing from global activity patterns the distribution of in-coming degrees, for both excitatory and inhibitory neurons, as well as the distribution of the assigned currents. The proposed inverse scheme is first validated against synthetic data. Then, time-lapse acquisitions of a zebrafish larva recorded with a two-photon light sheet microscope are used as an input to the reconstruction algorithm. A power law distribution of the in-coming connectivity of the excitatory neurons is found. Local degree distributions are also computed by segmenting the whole brain in sub-regions traced from annotated atlas.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"159-174"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-020-00774-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25568650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01DOI: 10.1007/s10827-020-00776-z
Qiang Zhang, Yue Dai
{"title":"Correction to: A modeling study of spinal motoneuron recruitment regulated by ionic channels during fictive locomotion.","authors":"Qiang Zhang, Yue Dai","doi":"10.1007/s10827-020-00776-z","DOIUrl":"https://doi.org/10.1007/s10827-020-00776-z","url":null,"abstract":"","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"207"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-020-00776-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38869423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-02-17DOI: 10.1007/s10827-021-00780-x
Yuru Song, Mingchen Yao, Helen Kemprecos, Aine Byrne, Zhengdong Xiao, Qiaosheng Zhang, Amrita Singh, Jing Wang, Zhe S Chen
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
{"title":"Predictive coding models for pain perception.","authors":"Yuru Song, Mingchen Yao, Helen Kemprecos, Aine Byrne, Zhengdong Xiao, Qiaosheng Zhang, Amrita Singh, Jing Wang, Zhe S Chen","doi":"10.1007/s10827-021-00780-x","DOIUrl":"https://doi.org/10.1007/s10827-021-00780-x","url":null,"abstract":"<p><p>Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"107-127"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-021-00780-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25380632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01DOI: 10.1007/s10827-021-00781-w
Alain Destexhe, Jonathan D Victor
{"title":"Editorial: new article type \"perspective\".","authors":"Alain Destexhe, Jonathan D Victor","doi":"10.1007/s10827-021-00781-w","DOIUrl":"https://doi.org/10.1007/s10827-021-00781-w","url":null,"abstract":"","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"69"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-021-00781-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25423463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-01Epub Date: 2021-04-05DOI: 10.1007/s10827-021-00779-4
Sonica Saraf, Lai-Sang Young
An important problem in systems neuroscience is to understand how information is communicated among brain regions, and it has been proposed that communication is mediated by neuronal oscillations, such as rhythms in the gamma band. We sought to investigate this idea by using a network model with two components, a source (sending) and a target (receiving) component, both built to resemble local populations in the cerebral cortex. To measure the effectiveness of communication, we used population-level correlations in spike times between the source and target. We found that after correcting for a response time that is independent of initial conditions, spike-time correlations between the source and target are significant, due in large measure to the alignment of firing events in their gamma rhythms. But, we also found that regular oscillations cannot produce the results observed in our model simulations of cortical neurons. Surprisingly, it is the irregularity of gamma rhythms, the absence of internal clocks, together with the malleability of these rhythms and their tendency to align with external pulses - features that are known to be present in gamma rhythms in the real cortex - that produced the results observed. These findings and the mechanistic explanations we offered are our primary results. Our secondary result is a mathematical relationship between correlations and the sizes of the samples used for their calculation. As improving technology enables recording simultaneously from increasing numbers of neurons, this relationship could be useful for interpreting results from experimental recordings.
{"title":"Malleability of gamma rhythms enhances population-level correlations.","authors":"Sonica Saraf, Lai-Sang Young","doi":"10.1007/s10827-021-00779-4","DOIUrl":"https://doi.org/10.1007/s10827-021-00779-4","url":null,"abstract":"<p><p>An important problem in systems neuroscience is to understand how information is communicated among brain regions, and it has been proposed that communication is mediated by neuronal oscillations, such as rhythms in the gamma band. We sought to investigate this idea by using a network model with two components, a source (sending) and a target (receiving) component, both built to resemble local populations in the cerebral cortex. To measure the effectiveness of communication, we used population-level correlations in spike times between the source and target. We found that after correcting for a response time that is independent of initial conditions, spike-time correlations between the source and target are significant, due in large measure to the alignment of firing events in their gamma rhythms. But, we also found that regular oscillations cannot produce the results observed in our model simulations of cortical neurons. Surprisingly, it is the irregularity of gamma rhythms, the absence of internal clocks, together with the malleability of these rhythms and their tendency to align with external pulses - features that are known to be present in gamma rhythms in the real cortex - that produced the results observed. These findings and the mechanistic explanations we offered are our primary results. Our secondary result is a mathematical relationship between correlations and the sizes of the samples used for their calculation. As improving technology enables recording simultaneously from increasing numbers of neurons, this relationship could be useful for interpreting results from experimental recordings.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":"49 2","pages":"189-205"},"PeriodicalIF":1.2,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10827-021-00779-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25561013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}