首页 > 最新文献

European Biophysics Journal最新文献

英文 中文
BASIS: BioAnalysis SEDFIT integrated software for cGMP analysis of SV-AUC data BASIS:用于 SV-AUC 数据 cGMP 分析的 BioAnalysis SEDFIT 集成软件。
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-02-08 DOI: 10.1007/s00249-024-01700-4
Alexander E. Yarawsky, Erik S. Gough, Valeria Zai-Rose, Natalya I. Figueroa, Hazel M. Cunningham, John W. Burgner II, Michael T. DeLion, Lake N. Paul

Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the “gold standard” analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, “BASIS”, which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.

沉降速度分析超速离心法(SV-AUC)一直以来都是表征抗体疗法的重要方法。最近,基因和细胞疗法行业对 SV-AUC 产生了浓厚的兴趣,并开始使用 SV-AUC,事实证明 SV-AUC 是确定腺相关病毒 (AAV) 和其他病毒载体的囊载率的 "黄金标准 "分析方法。多年来,符合 cGMP 标准的技术领域一直存在其他更常见的方法,但 SV-AUC 长期以来一直被严格用于表征,而非释放测试。本手稿描述了将 SV-AUC 引入 cGMP 环境所面临的挑战,并介绍了一种新程序 "BASIS",它允许使用著名且经常被引用的 SEDFIT 分析软件进行符合 21 CFR 第 11 部分的数据处理和数据分析。
{"title":"BASIS: BioAnalysis SEDFIT integrated software for cGMP analysis of SV-AUC data","authors":"Alexander E. Yarawsky,&nbsp;Erik S. Gough,&nbsp;Valeria Zai-Rose,&nbsp;Natalya I. Figueroa,&nbsp;Hazel M. Cunningham,&nbsp;John W. Burgner II,&nbsp;Michael T. DeLion,&nbsp;Lake N. Paul","doi":"10.1007/s00249-024-01700-4","DOIUrl":"10.1007/s00249-024-01700-4","url":null,"abstract":"<div><p>Sedimentation velocity analytical ultracentrifugation (SV-AUC) has long been an important method for characterization of antibody therapeutics. Recently, SV-AUC has experienced a wave of new interest and usage from the gene and cell therapy industry, where SV-AUC has proven itself to be the “gold standard” analytical approach for determining capsid loading ratios for adeno-associated virus (AAV) and other viral vectors. While other more common approaches have existed in the realm of cGMP-compliant techniques for years, SV-AUC has long been used strictly for characterization, but not for release testing. This manuscript describes the challenges faced in bringing SV-AUC to a cGMP environment and describes a new program, “BASIS”, which allows for 21 CFR Part 11-compliant data handling and data analysis using the well-known and frequently cited SEDFIT analysis software.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 3","pages":"111 - 121"},"PeriodicalIF":2.2,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139701512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration spectra of DNA and RNA segments DNA 和 RNA 片段的振动光谱。
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-01-24 DOI: 10.1007/s00249-023-01699-0
Samira Jalilvand, Hamze Mousavi

The dispersion curves and density of states are used to analyze the vibrational characteristics of DNA and RNA segments. This is done using a harmonic Hamiltonian and the Green’s function technique. Two configurations of DNA and RNA, finite and cyclic, have been investigated and compared to their infinite counterparts. For the DNA molecule, three models, including a fishbone model, a ldder model, and a fishbone ladder model, have been employed, while the RNA molecule has been represented using a half fishbone model. To enhance the realism of DNA and RNA simulations, the unit cells within each infinite system as well as the length of the finite and cyclic cases are gradually enlarged. The connections between the sub-sites have been modeled using linear springs, where the stiffness of the vertical springs exhibits random variations throughout the length of the DNA and RNA models. Shorter DNA and RNA segments exhibit additional peaks in their density of states, resulting in more bands in dispersion curves. This indicates that as the number of building blocks grows in these segments, their curves resemble those of infinite systems. These findings have practical implications for studying the vibration characteristics of similar macro-systems.

色散曲线和状态密度用于分析 DNA 和 RNA 片段的振动特性。分析采用了谐波哈密顿和格林函数技术。研究了 DNA 和 RNA 的两种构型(有限构型和循环构型),并将其与无限构型进行了比较。DNA 分子采用了三种模型,包括鱼骨模型、ldder 模型和鱼骨阶梯模型,而 RNA 分子则采用了半鱼骨模型。为了增强 DNA 和 RNA 模拟的真实感,每个无限系统内的单元格以及有限和循环情况下的长度都被逐渐放大。子点之间的连接采用线性弹簧建模,垂直弹簧的刚度在 DNA 和 RNA 模型的整个长度上呈现随机变化。较短的 DNA 和 RNA 片段在其状态密度中会出现更多的峰值,从而导致分散曲线中出现更多的条带。这表明,随着这些片段中构建模块数量的增加,它们的曲线类似于无限系统的曲线。这些发现对研究类似宏观系统的振动特性具有实际意义。
{"title":"Vibration spectra of DNA and RNA segments","authors":"Samira Jalilvand,&nbsp;Hamze Mousavi","doi":"10.1007/s00249-023-01699-0","DOIUrl":"10.1007/s00249-023-01699-0","url":null,"abstract":"<div><p>The dispersion curves and density of states are used to analyze the vibrational characteristics of DNA and RNA segments. This is done using a harmonic Hamiltonian and the Green’s function technique. Two configurations of DNA and RNA, finite and cyclic, have been investigated and compared to their infinite counterparts. For the DNA molecule, three models, including a fishbone model, a ldder model, and a fishbone ladder model, have been employed, while the RNA molecule has been represented using a half fishbone model. To enhance the realism of DNA and RNA simulations, the unit cells within each infinite system as well as the length of the finite and cyclic cases are gradually enlarged. The connections between the sub-sites have been modeled using linear springs, where the stiffness of the vertical springs exhibits random variations throughout the length of the DNA and RNA models. Shorter DNA and RNA segments exhibit additional peaks in their density of states, resulting in more bands in dispersion curves. This indicates that as the number of building blocks grows in these segments, their curves resemble those of infinite systems. These findings have practical implications for studying the vibration characteristics of similar macro-systems.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 3","pages":"95 - 109"},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time tilting and twisting motions of ligand-bound states of α7 nicotinic acetylcholine receptor α7烟碱乙酰胆碱受体配体结合态的实时倾斜和扭转运动
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-01-17 DOI: 10.1007/s00249-023-01693-6
Yue Yang, Tatsuya Arai, Daisuke Sasaki, Masahiro Kuramochi, Hidetoshi Inagaki, Sumiko Ohashi, Hiroshi Sekiguchi, Kazuhiro Mio, Tai Kubo, Yuji C. Sasaki

The α7 nicotinic acetylcholine receptor is a member of the nicotinic acetylcholine receptor family and is composed of five α7 subunits arranged symmetrically around a central pore. It is localized in the central nervous system and immune cells and could be a target for treating Alzheimer’s disease and schizophrenia. Acetylcholine is a ligand that opens the channel, although prolonged application rapidly decreases the response. Ivermectin was reported as one of the positive allosteric modulators, since the binding of Ivermectin to the channel enhances acetylcholine-evoked α7 currents. One research has suggested that tilting motions of the nicotinic acetylcholine receptor are responsible for channel opening and activation. To verify this hypothesis applies to α7 nicotinic acetylcholine receptor, we utilized a diffracted X-ray tracking method to monitor the stable twisting and tilting motion of nAChR α7 without a ligand, with acetylcholine, with Ivermectin, and with both of them. The results show that the α7 nicotinic acetylcholine receptor twists counterclockwise with the channel transiently opening, transitioning to a desensitized state in the presence of acetylcholine and clockwise without the channel opening in the presence of Ivermectin. We propose that the conformational transition of ACh-bound nAChR α7 may be due to the collective twisting of the five α7 subunits, resulting in the compression and movement, either downward or upward, of one or more subunits, thus manifesting tilting motions. These tilting motions possibly represent the transition from the resting state to channel opening and potentially to the desensitized state.

α7烟碱乙酰胆碱受体是烟碱乙酰胆碱受体家族的成员,由围绕中心孔对称排列的五个α7亚基组成。它存在于中枢神经系统和免疫细胞中,可作为治疗阿尔茨海默病和精神分裂症的靶点。乙酰胆碱是打开该通道的配体,但长时间应用会迅速降低反应。据报道,伊维菌素是积极的异位调节剂之一,因为伊维菌素与通道结合会增强乙酰胆碱诱发的α7电流。一项研究表明,烟碱乙酰胆碱受体的倾斜运动是通道开放和激活的原因。为了验证这一假说是否适用于α7烟碱乙酰胆碱受体,我们利用衍射X射线跟踪法监测了nAChR α7在无配体、有乙酰胆碱、有伊维菌素以及有这两种配体时的稳定扭转和倾斜运动。结果表明,α7 尼古丁乙酰胆碱受体在乙酰胆碱存在的情况下逆时针扭转,通道短暂开放,过渡到脱敏状态;在伊维菌素存在的情况下顺时针扭转,通道不开放。我们认为,与乙酰胆碱结合的 nAChR α7 的构象转变可能是由于五个 α7 亚基的集体扭曲,导致一个或多个亚基向下或向上压缩和移动,从而表现出倾斜运动。这些倾斜运动可能代表了从静止状态到通道开放的转变,也可能代表了到脱敏状态的转变。
{"title":"Real-time tilting and twisting motions of ligand-bound states of α7 nicotinic acetylcholine receptor","authors":"Yue Yang,&nbsp;Tatsuya Arai,&nbsp;Daisuke Sasaki,&nbsp;Masahiro Kuramochi,&nbsp;Hidetoshi Inagaki,&nbsp;Sumiko Ohashi,&nbsp;Hiroshi Sekiguchi,&nbsp;Kazuhiro Mio,&nbsp;Tai Kubo,&nbsp;Yuji C. Sasaki","doi":"10.1007/s00249-023-01693-6","DOIUrl":"10.1007/s00249-023-01693-6","url":null,"abstract":"<div><p>The α7 nicotinic acetylcholine receptor is a member of the nicotinic acetylcholine receptor family and is composed of five α7 subunits arranged symmetrically around a central pore. It is localized in the central nervous system and immune cells and could be a target for treating Alzheimer’s disease and schizophrenia. Acetylcholine is a ligand that opens the channel, although prolonged application rapidly decreases the response. Ivermectin was reported as one of the positive allosteric modulators, since the binding of Ivermectin to the channel enhances acetylcholine-evoked α7 currents. One research has suggested that tilting motions of the nicotinic acetylcholine receptor are responsible for channel opening and activation. To verify this hypothesis applies to α7 nicotinic acetylcholine receptor, we utilized a diffracted X-ray tracking method to monitor the stable twisting and tilting motion of nAChR α7 without a ligand, with acetylcholine, with Ivermectin, and with both of them. The results show that the α7 nicotinic acetylcholine receptor twists counterclockwise with the channel transiently opening, transitioning to a desensitized state in the presence of acetylcholine and clockwise without the channel opening in the presence of Ivermectin. We propose that the conformational transition of ACh-bound nAChR α7 may be due to the collective twisting of the five α7 subunits, resulting in the compression and movement, either downward or upward, of one or more subunits, thus manifesting tilting motions. These tilting motions possibly represent the transition from the resting state to channel opening and potentially to the desensitized state.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"15 - 25"},"PeriodicalIF":2.2,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01693-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139482541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quenching of G4-DNA intrinsic fluorescence by ligands 配体对 G4-DNA 本征荧光的淬灭作用
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-01-13 DOI: 10.1007/s00249-023-01696-3
Liana L. Tevonyan, Artemy D. Beniaminov, Dmitry N. Kaluzhny

G-quadruplex (G4) structures formed by the guanine-rich DNA regions exhibit several distinctive optical properties, including UV absorption and circular dichroism spectra. Some G4 DNA possess intrinsic UV fluorescence whose origin is not completely clear to date. In this work, we study the effect of TMPyP4 and Methylene Blue on the intrinsic fluorescence of the dimeric G4 DNA structure formed by two d(G3T)4 sequences. We demonstrate that binding of the ligands results in quenching of the intrinsic fluorescence, although the conformation of the G4 DNA and its dimeric structure remain preserved. The binding sites of the ligands were suggested by the photoinduced oxidation of guanines and analysis of binding isoterms. We discuss how DNA-ligand complexes can affect the intrinsic fluorescence of G4 DNA.

摘要 由富含鸟嘌呤的 DNA 区域形成的 G-四重链(G4)结构具有多种独特的光学特性,包括紫外吸收和圆二色光谱。一些 G4 DNA 具有本征紫外荧光,但其来源至今尚未完全清楚。在这项工作中,我们研究了 TMPyP4 和亚甲蓝对由两个 d(G3T)4 序列形成的二聚 G4 DNA 结构本征荧光的影响。我们证明,虽然 G4 DNA 的构象及其二聚体结构保持不变,但配体的结合会导致本征荧光淬灭。配体的结合位点是通过鸟嘌呤的光诱导氧化和结合等值线分析得出的。我们讨论了 DNA 配体复合物如何影响 G4 DNA 的本征荧光。
{"title":"Quenching of G4-DNA intrinsic fluorescence by ligands","authors":"Liana L. Tevonyan,&nbsp;Artemy D. Beniaminov,&nbsp;Dmitry N. Kaluzhny","doi":"10.1007/s00249-023-01696-3","DOIUrl":"10.1007/s00249-023-01696-3","url":null,"abstract":"<div><p>G-quadruplex (G4) structures formed by the guanine-rich DNA regions exhibit several distinctive optical properties, including UV absorption and circular dichroism spectra. Some G4 DNA possess intrinsic UV fluorescence whose origin is not completely clear to date. In this work, we study the effect of TMPyP4 and Methylene Blue on the intrinsic fluorescence of the dimeric G4 DNA structure formed by two d(G<sub>3</sub>T)<sub>4</sub> sequences. We demonstrate that binding of the ligands results in quenching of the intrinsic fluorescence, although the conformation of the G4 DNA and its dimeric structure remain preserved. The binding sites of the ligands were suggested by the photoinduced oxidation of guanines and analysis of binding isoterms. We discuss how DNA-ligand complexes can affect the intrinsic fluorescence of G4 DNA.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"47 - 56"},"PeriodicalIF":2.2,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swimming polarity inversion in uncultured magnetotactic cocci 未培养的磁性球菌的游动极性反转。
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-01-12 DOI: 10.1007/s00249-023-01698-1
Giovanny Angiolillo, Fernanda Abreu, Daniel Acosta-Avalos

Magnetotactic bacteria are microorganisms that produce intracellular magnetic nanoparticles organized in chains, conferring a magnetic moment to the bacterial body that allows it to swim following the geomagnetic field lines. Magnetotactic bacteria usually display two swimming polarities in environmental samples: the South-seeking (SS) polarity and the North-seeking (NS) polarity, characterized by the bacteria swimming antiparallel or parallel to the magnetic field lines, respectively. It has been observed that in the presence of inhomogeneous magnetic fields, NS magnetotactic bacteria can change their swimming polarity to SS or vice versa. The present study analyzes populations of NS cocci obtained from SS cocci isolated in the presence of a magnet. The aim was to study differences in the swimming characteristics and magnetic moment among both populations of cocci. For that, trajectories were recorded and the velocity and angle among the velocity and the applied magnetic field were calculated. In addition, micrographs from both SS and NS cocci were obtained and their magnetosomes were measured to analyze their length, width, aspect ratio and magnetic moment, to finally obtain the magnetic moment for each coccus. The results showed the following properties of NS relative to SS cocci: higher velocities, narrow bacterial magnetic moment distribution, higher dispersion in the distribution of angles among the velocity and the applied magnetic field and lower magnetic field sensibility. Those differences cannot be explained by the simple change in magnetic polarity of the magnetosome chain and can be related to the existence of an active magnetoreceptive process in magnetotactic bacteria.

磁动细菌是一种微生物,能在细胞内产生成链的磁性纳米粒子,赋予细菌身体磁矩,使其能够顺着地磁场线游动。磁动细菌在环境样本中通常表现出两种游动极性:寻南极性(SS)和寻北极性(NS),其特点是细菌分别与磁场线平行或反平行游动。据观察,在存在不均匀磁场的情况下,NS趋磁细菌可将其游动极性转变为 SS 极性,反之亦然。本研究分析了在磁体存在的情况下从分离的 SS 球菌中获得的 NS 球菌种群。目的是研究两种球菌种群在游动特性和磁矩方面的差异。为此,研究人员记录了球菌的游动轨迹,并计算了速度以及速度与外加磁场之间的夹角。此外,还获得了 SS 和 NS 球菌的显微照片,并测量了它们的磁小体,分析了它们的长度、宽度、长宽比和磁矩,最终获得了每种球菌的磁矩。结果表明,相对于 SS 球菌,NS 球菌具有以下特性:速度更高,细菌磁矩分布更窄,速度与外加磁场之间的角度分布更分散,磁场敏感性更低。这些差异不能用磁小体链磁极性的简单变化来解释,而可能与趋磁细菌中存在活跃的磁感应过程有关。
{"title":"Swimming polarity inversion in uncultured magnetotactic cocci","authors":"Giovanny Angiolillo,&nbsp;Fernanda Abreu,&nbsp;Daniel Acosta-Avalos","doi":"10.1007/s00249-023-01698-1","DOIUrl":"10.1007/s00249-023-01698-1","url":null,"abstract":"<div><p>Magnetotactic bacteria are microorganisms that produce intracellular magnetic nanoparticles organized in chains, conferring a magnetic moment to the bacterial body that allows it to swim following the geomagnetic field lines. Magnetotactic bacteria usually display two swimming polarities in environmental samples: the South-seeking (SS) polarity and the North-seeking (NS) polarity, characterized by the bacteria swimming antiparallel or parallel to the magnetic field lines, respectively. It has been observed that in the presence of inhomogeneous magnetic fields, NS magnetotactic bacteria can change their swimming polarity to SS or vice versa. The present study analyzes populations of NS cocci obtained from SS cocci isolated in the presence of a magnet. The aim was to study differences in the swimming characteristics and magnetic moment among both populations of cocci. For that, trajectories were recorded and the velocity and angle among the velocity and the applied magnetic field were calculated. In addition, micrographs from both SS and NS cocci were obtained and their magnetosomes were measured to analyze their length, width, aspect ratio and magnetic moment, to finally obtain the magnetic moment for each coccus. The results showed the following properties of NS relative to SS cocci: higher velocities, narrow bacterial magnetic moment distribution, higher dispersion in the distribution of angles among the velocity and the applied magnetic field and lower magnetic field sensibility. Those differences cannot be explained by the simple change in magnetic polarity of the magnetosome chain and can be related to the existence of an active magnetoreceptive process in magnetotactic bacteria.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"69 - 76"},"PeriodicalIF":2.2,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy 探究 HIV-1 基质蛋白衍生的多基区与脂质双分子层的相互作用:原子力显微镜成像和力谱分析的启示。
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2024-01-03 DOI: 10.1007/s00249-023-01697-2
Chinta M. Aryal, Jianjun Pan

The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer’s elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.

人类免疫缺陷病毒 1 型(HIV-1)基质蛋白含有一个高碱性区域 MA-HBR,对病毒复制的各个阶段至关重要。为了阐明多碱性肽 MA-HBR 与脂质双分子层之间的相互作用,我们在不同成分的脂质双分子层上采用了液基原子力显微镜(AFM)成像和力谱分析技术。在 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)双层膜中,原子力显微镜成像显示,暴露于多基肽后会形成环状突起,并伴有以双层膜穿刺力增强为特征的独特机械反应。重要的是,我们基于原子力显微镜的力谱测量发现,MA-HBR 可诱导内聚双分子层组织中的小叶间解耦。在双分子层弹性变形机制中观察到的力不连续性证明了这一点。在 POPC/胆固醇双分子层中,MA-HBR 造成了类似但较小的环状突起,显示了与富含胆固醇的膜之间有趣的相互作用。相反,在含有阴离子 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸-L-丝氨酸(POPS)脂质的双层膜中,MA-HBR 引发了独特的环状突起、颗粒状纳米颗粒和纳米管,展示了其在富含阴离子脂质环境中的独特作用。值得注意的是,我们的力谱数据显示,阴离子 POPS 脂质削弱了双分子层内的小叶间粘附力,导致小叶间脱钩,这可能是 MA-HBR 诱导的特定双分子层扰动的原因。总之,我们的研究结果凸显了多基肽 MA-HBR 与不同组成的脂质双分子层相互作用的显著差异,从而揭示了它在 HIV-1 感染期间宿主膜重组中的作用。
{"title":"Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy","authors":"Chinta M. Aryal,&nbsp;Jianjun Pan","doi":"10.1007/s00249-023-01697-2","DOIUrl":"10.1007/s00249-023-01697-2","url":null,"abstract":"<div><p>The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer’s elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"57 - 67"},"PeriodicalIF":2.2,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophoresis, a transport technology that transitioned from moving boundary method to zone method 电泳,一种从移动边界法过渡到区域法的传输技术
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2023-12-30 DOI: 10.1007/s00249-023-01694-5
Tsutomu Arakawa, Masataka Nakagawa, Chiaki Sakuma, Yui Tomioka, Yasunori Kurosawa, Daisuke Ejima, Teruo Akuta

Gel electrophoresis, a transport technology, is one of the most widely used experimental methods in biochemical and pharmaceutical research and development. Transport technologies are used to determine hydrodynamic or electrophoretic properties of macromolecules. Gel electrophoresis is a zone technology, where a small volume of sample is applied to a large separation gel matrix. In contrast, a seldom-used electrophoresis technology is moving boundary electrophoresis, where the sample is present throughout the separation phase or gel matrix. While the zone method gives peaks of separating macromolecular solutes, the moving boundary method gives a boundary between solute-free and solute-containing phases. We will review electrophoresis as a transport technology of zone and moving boundary methods and describe its principles and applications.

凝胶电泳是一种传输技术,是生化和制药研发领域应用最广泛的实验方法之一。传输技术用于确定大分子的流体力学或电泳特性。凝胶电泳是一种区带技术,将小体积的样品涂在大体积的分离凝胶基质上。相比之下,很少使用的电泳技术是移动边界电泳,即样品存在于整个分离相或凝胶基质中。区带电泳法可得到分离大分子溶质的峰值,而移动边界电泳法可得到无溶剂相与含溶质相之间的边界。我们将回顾电泳作为区带法和移动边界法的传输技术,并介绍其原理和应用。
{"title":"Electrophoresis, a transport technology that transitioned from moving boundary method to zone method","authors":"Tsutomu Arakawa,&nbsp;Masataka Nakagawa,&nbsp;Chiaki Sakuma,&nbsp;Yui Tomioka,&nbsp;Yasunori Kurosawa,&nbsp;Daisuke Ejima,&nbsp;Teruo Akuta","doi":"10.1007/s00249-023-01694-5","DOIUrl":"10.1007/s00249-023-01694-5","url":null,"abstract":"<div><p>Gel electrophoresis, a transport technology, is one of the most widely used experimental methods in biochemical and pharmaceutical research and development. Transport technologies are used to determine hydrodynamic or electrophoretic properties of macromolecules. Gel electrophoresis is a zone technology, where a small volume of sample is applied to a large separation gel matrix. In contrast, a seldom-used electrophoresis technology is moving boundary electrophoresis, where the sample is present throughout the separation phase or gel matrix. While the zone method gives peaks of separating macromolecular solutes, the moving boundary method gives a boundary between solute-free and solute-containing phases. We will review electrophoresis as a transport technology of zone and moving boundary methods and describe its principles and applications.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"1 - 13"},"PeriodicalIF":2.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139069283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hydrogen bonds using a simple descriptor TMPRSS2 的抑制剂设计:使用简单描述符对其骨架氢键进行计算分析的启示
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2023-12-29 DOI: 10.1007/s00249-023-01695-4
Suraj Ugrani

Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scoring function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface area term ΔGsa of the GBSA score is demonstrated with machine learning regression and principal component analysis. The effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these inhibitors and may prove useful in the design of new inhibitors.

跨膜丝氨酸蛋白酶 2 (TMPRSS2) 是一个重要的药物靶点,因为它在包括 SARS-CoV-2 在内的冠状病毒的感染机制中扮演着重要角色。目前,人们对已知抑制剂的分子机制和抑制剂设计所需的见解了解有限。氢键包裹是指氢键在溶剂环境中因被非极性基团包围而变得稳定的现象,本研究利用氢键包裹概念研究了抑制剂结合对 TMPRSS2 分子内骨架氢键(BHB)的影响。为此,我们引入了一种分子描述符,用于量化氢键包裹的程度。首先,使用带有广义博恩表面积(GBSA)评分函数的 DOCK 6 程序进行分子对接,虚拟筛选 TMPRSS2 抑制剂。然后使用该描述符对对接结果进行分析,并通过机器学习回归和主成分分析证明了该描述符与 GBSA 评分中的可溶解表面积项 ΔGsa 的关系。此外,还使用分子动力学方法研究了抑制剂卡莫司他、萘莫司他和 4-胍基苯甲酸(GBA)的结合对 TMPRSS2 中重要 BHB 的包裹的影响。对于这些抑制剂导致包裹基团大量增加的 BHBs,水的径向分布函数显示,这些 BHBs 所涉及的某些残基(如 Gln438、Asp440 和 Ser441)会发生优先脱溶。这些发现为了解这些抑制剂的机制提供了宝贵的见解,并可能被证明有助于设计新的抑制剂。
{"title":"Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hydrogen bonds using a simple descriptor","authors":"Suraj Ugrani","doi":"10.1007/s00249-023-01695-4","DOIUrl":"10.1007/s00249-023-01695-4","url":null,"abstract":"<div><p>Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scoring function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface area term ΔG<sub>sa</sub> of the GBSA score is demonstrated with machine learning regression and principal component analysis. The effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these inhibitors and may prove useful in the design of new inhibitors.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"27 - 46"},"PeriodicalIF":2.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01695-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139069281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects 更正:热敏 TRP 通道的灵活性与内在紊乱区域之间的关系揭示了异构效应。
IF 2.2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2023-12-12 DOI: 10.1007/s00249-023-01692-7
Abigail García‑Morales, Nancy O. Pulido, Daniel Balleza
{"title":"Correction: Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects","authors":"Abigail García‑Morales,&nbsp;Nancy O. Pulido,&nbsp;Daniel Balleza","doi":"10.1007/s00249-023-01692-7","DOIUrl":"10.1007/s00249-023-01692-7","url":null,"abstract":"","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"93 - 93"},"PeriodicalIF":2.2,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide-based pore formation and cell membrane deformation: European Biophysics Journal Prizes at EBSA 2023 基于多肽的孔隙形成和细胞膜变形:欧洲生物物理杂志奖在EBSA 2023。
IF 2 4区 生物学 Q3 BIOPHYSICS Pub Date : 2023-11-23 DOI: 10.1007/s00249-023-01691-8
Robert J. C. Gilbert

The European Biophysics Journal Prizes awarded at the European Biophysical Societies Association (EBSA) Congress in Stockholm in the Summer of 2023 recognised papers published in 2020 and 2021 which made use of multiple complementing experimental, theoretical and computational approaches. One of the winning papers addressed the specific role of arginine residues within antimicrobial and cell-penetrating peptides, in promoting membrane defect stabilisation and pore formation. The other winning paper described the influence of atomic force microscopy probe geometry on the measurement of surface deformability, assessed for investigation of the differing viscoelastic properties of non-malignant and cancerous cells. These papers showcase biophysical science; the importance of combining different experimental, modelling and molecular dynamics methods; and how researchers need to understand the theoretical basis and the limitations of the techniques they use. EBSA warmly congratulates the authors on their work and its subsequent recognition. Publication of these papers also demonstrates the ongoing commitment of the European Biophysics Journal to molecular scale and to systems biophysics, and to support of the international biophysical community.

2023年夏天在斯德哥尔摩举行的欧洲生物物理学会协会(EBSA)大会上颁发的欧洲生物物理学期刊奖认可了在2020年和2021年发表的论文,这些论文利用了多种互补的实验、理论和计算方法。其中一篇获奖论文讨论了精氨酸残基在抗菌和细胞穿透肽中的特殊作用,在促进膜缺陷稳定和孔形成方面。另一篇获奖论文描述了原子力显微镜探针几何形状对表面可变形性测量的影响,用于研究非恶性细胞和癌细胞的不同粘弹性特性。这些论文展示了生物物理科学;结合不同的实验、建模和分子动力学方法的重要性;以及研究人员需要如何理解他们所使用的技术的理论基础和局限性。EBSA热烈祝贺作者的工作和随后的认可。这些论文的发表也表明了《欧洲生物物理学杂志》对分子尺度和系统生物物理学的持续承诺,以及对国际生物物理学社区的支持。
{"title":"Peptide-based pore formation and cell membrane deformation: European Biophysics Journal Prizes at EBSA 2023","authors":"Robert J. C. Gilbert","doi":"10.1007/s00249-023-01691-8","DOIUrl":"10.1007/s00249-023-01691-8","url":null,"abstract":"<div><p>The European Biophysics Journal Prizes awarded at the European Biophysical Societies Association (EBSA) Congress in Stockholm in the Summer of 2023 recognised papers published in 2020 and 2021 which made use of multiple complementing experimental, theoretical and computational approaches. One of the winning papers addressed the specific role of arginine residues within antimicrobial and cell-penetrating peptides, in promoting membrane defect stabilisation and pore formation. The other winning paper described the influence of atomic force microscopy probe geometry on the measurement of surface deformability, assessed for investigation of the differing viscoelastic properties of non-malignant and cancerous cells. These papers showcase biophysical science; the importance of combining different experimental, modelling and molecular dynamics methods; and how researchers need to understand the theoretical basis and the limitations of the techniques they use. EBSA warmly congratulates the authors on their work and its subsequent recognition. Publication of these papers also demonstrates the ongoing commitment of the European Biophysics Journal to molecular scale and to systems biophysics, and to support of the international biophysical community.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 8","pages":"619 - 623"},"PeriodicalIF":2.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Biophysics Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1