Pub Date : 2024-08-02DOI: 10.1007/s00249-024-01718-8
Ping Xie
Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.
{"title":"Modeling study of kinesin-13 MCAK microtubule depolymerase","authors":"Ping Xie","doi":"10.1007/s00249-024-01718-8","DOIUrl":"10.1007/s00249-024-01718-8","url":null,"abstract":"<div><p>Mitotic centromere-associated kinesin (MCAK) motor protein is a typical member of the kinesin-13 family, which can depolymerize microtubules from both plus and minus ends. A critical issue for the MCAK motor is how it performs the depolymerase activity. To address the issue, the pathway of the MCAK motor moving on microtubules and depolymerizing the microtubules is presented here. On the basis of the pathway, the dynamics of both the wild-type and mutant MCAK motors is studied theoretically, which include the full-length MCAK, the full-length MCAK with mutations in the α4-helix of the motor domain, the mutant full-length MCAK with a neutralized neck, the monomeric MCAK and the mutant monomeric MCAK with a neutralized neck. The studies show that a single dimeric MCAK motor can depolymerize microtubules in a processive manner, with either one tubulin or two tubulins being removed per times. The theoretical results are in agreement with the available experimental data. Moreover, predicted results are provided.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"339 - 354"},"PeriodicalIF":2.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1007/s00249-024-01717-9
Mohammad K. I. Walid, Sharifur Rahman, Emily A. Smith
Receptor for advanced glycation endproducts (RAGE) and toll-like receptor 4 (TLR4) are pattern-recognition receptors that bind to molecular patterns associated with pathogens, stress, and cellular damage. Diffusion plays an important role in receptor functionality in the cell membrane. However, there has been no prior investigation of the reciprocal effect of RAGE and TLR4 diffusion properties in the presence and absence of each receptor. This study reports how RAGE and TLR4 affect the mobility of each other in the human embryonic kidney (HEK) 293 cell membrane. Diffusion properties were measured using single-particle tracking (SPT) with quantum dots (QDs) that are selectively attached to RAGE or TLR4. The Brownian diffusion coefficients of RAGE and TLR4 are affected by the presence of the other receptor, leading to similar diffusion coefficients when both receptors coexist in the cell. When TLR4 is present, the average Brownian diffusion coefficient of RAGE increases by 40%, while the presence of RAGE decreases the average Brownian diffusion coefficient of TLR4 by 32%. Diffusion in confined membrane domains is not altered by the presence of the other receptor. The mobility of the cell membrane lipid remains constant whether one or both receptors are present. Overall, this work shows that the presence of each receptor can affect a subset of diffusion properties of the other receptor without affecting the mobility of the membrane.
{"title":"Reciprocal effect on lateral diffusion of receptor for advanced glycation endproducts and toll-like receptor 4 in the HEK293 cell membrane","authors":"Mohammad K. I. Walid, Sharifur Rahman, Emily A. Smith","doi":"10.1007/s00249-024-01717-9","DOIUrl":"10.1007/s00249-024-01717-9","url":null,"abstract":"<div><p>Receptor for advanced glycation endproducts (RAGE) and toll-like receptor 4 (TLR4) are pattern-recognition receptors that bind to molecular patterns associated with pathogens, stress, and cellular damage. Diffusion plays an important role in receptor functionality in the cell membrane. However, there has been no prior investigation of the reciprocal effect of RAGE and TLR4 diffusion properties in the presence and absence of each receptor. This study reports how RAGE and TLR4 affect the mobility of each other in the human embryonic kidney (HEK) 293 cell membrane. Diffusion properties were measured using single-particle tracking (SPT) with quantum dots (QDs) that are selectively attached to RAGE or TLR4. The Brownian diffusion coefficients of RAGE and TLR4 are affected by the presence of the other receptor, leading to similar diffusion coefficients when both receptors coexist in the cell. When TLR4 is present, the average Brownian diffusion coefficient of RAGE increases by 40%, while the presence of RAGE decreases the average Brownian diffusion coefficient of TLR4 by 32%. Diffusion in confined membrane domains is not altered by the presence of the other receptor. The mobility of the cell membrane lipid remains constant whether one or both receptors are present. Overall, this work shows that the presence of each receptor can affect a subset of diffusion properties of the other receptor without affecting the mobility of the membrane.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"327 - 338"},"PeriodicalIF":2.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1007/s00249-024-01715-x
Jia-Zeng Wang, Pengkun Hu, Shu Ma
The neuromuscular junction (NMJ) has an elaborate anatomy to ensure agile and accurate signal transmission. Based on our formerly obtained expressions of the thermal and conductance induced voltage fluctuations, in this paper, the mechanisms underlying the conductance-induced voltage fluctuation are characterized from two aspects: the scaling laws with respect to either of the two system-size factors, the number of receptors or the membrane area; and the “seesaw effect" with respect to the intensive parameter, the concentration of acetylcholine. According to these mechanisms, several aspects of the NMJ anatomy are explained from a denoising perspective. Finally, the power spectra of the two types of voltage fluctuations are characterized by their specific scaling laws, based on which we explain why the endplate noise has the low-frequency property that is described by the term “seashell sound".
{"title":"Mechanisms of stationary voltage fluctuation in the neuromuscular junction endplate and corresponding denoising paradigms","authors":"Jia-Zeng Wang, Pengkun Hu, Shu Ma","doi":"10.1007/s00249-024-01715-x","DOIUrl":"10.1007/s00249-024-01715-x","url":null,"abstract":"<div><p>The neuromuscular junction (NMJ) has an elaborate anatomy to ensure agile and accurate signal transmission. Based on our formerly obtained expressions of the thermal and conductance induced voltage fluctuations, in this paper, the mechanisms underlying the conductance-induced voltage fluctuation are characterized from two aspects: the scaling laws with respect to either of the two system-size factors, the number of receptors or the membrane area; and the “seesaw effect\" with respect to the intensive parameter, the concentration of acetylcholine. According to these mechanisms, several aspects of the NMJ anatomy are explained from a denoising perspective. Finally, the power spectra of the two types of voltage fluctuations are characterized by their specific scaling laws, based on which we explain why the endplate noise has the low-frequency property that is described by the term “seashell sound\".</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"299 - 310"},"PeriodicalIF":2.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1007/s00249-024-01716-w
Koen H. G. Verschueren, Eleanor J. Dodson, Anthony J. Wilkinson
In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD). The crystal structure of a dimeric EBD fragment of CysB from Klebsiella aerogenes revealed a protein fold similar to that seen in Lac repressor but with a different symmetry in the dimer so that the mode of DNA binding was not apparent. To elucidate the subunit arrangement in the tetramer, we determined the crystal structure of intact CysB in complex with N-acetylserine. The tetramer has two subunit types that differ in the juxtaposition of their winged helix-turn-helix DNA binding domains with respect to the effector binding domain. In the assembly, the four EBDs form a core with the DNA binding domains arranged in pairs on the surface. N-acetylserine makes extensive polar interactions in an enclosed binding site, and its binding is accompanied by substantial conformational rearrangements of surrounding residues that are propagated to the protein surface where they appear to alter the arrangement of the DNA binding domains. The results are (i) discussed in relation to the extensive mutational data available for CysB and (ii) used to propose a structural mechanism of N-acetylserine induced CysB activation.
在大肠杆菌和鼠伤寒沙门氏菌中,半胱氨酸的生物合成需要 20 个或更多 cys 基因的产物,这些基因由 CysB 协调调控。在硫限制条件下和诱导剂 N-乙酰丝氨酸存在的情况下,CysB 与 cys 启动子结合,激活下游编码序列的转录。CysB 是一种同源四聚体,由 N 端 DNA 结合结构域(DBD)和 C 端效应结合结构域(EBD)组成。来自产气克雷伯氏菌的 CysB 的二聚体 EBD 片段的晶体结构显示,其蛋白质折叠与 Lac 抑制剂相似,但二聚体的对称性不同,因此 DNA 结合模式并不明显。为了阐明四聚体中的亚基排列,我们测定了完整的 CysB 与 N-乙酰丝氨酸复合体的晶体结构。四聚体中有两种亚基类型,它们的翼螺旋-转螺旋 DNA 结合域与效应结合域的并列位置不同。在组装过程中,四个 EBD 形成核心,DNA 结合域成对排列在表面。N-acetylserine 在一个封闭的结合位点中产生了广泛的极性相互作用,其结合伴随着周围残基的大量构象重排,这些重排传播到蛋白质表面,似乎改变了 DNA 结合域的排列。研究结果(i)与 CysB 现有的大量突变数据进行了讨论,(ii)用于提出 N-乙酰丝氨酸诱导 CysB 激活的结构机制。
{"title":"The Structure of the LysR-type Transcriptional Regulator, CysB, Bound to the Inducer, N-acetylserine","authors":"Koen H. G. Verschueren, Eleanor J. Dodson, Anthony J. Wilkinson","doi":"10.1007/s00249-024-01716-w","DOIUrl":"10.1007/s00249-024-01716-w","url":null,"abstract":"<div><p>In <i>Escherichia coli</i> and <i>Salmonella typhimurium</i>, cysteine biosynthesis requires the products of 20 or more <i>cys</i> genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, <i>N</i>-acetylserine, CysB binds to <i>cys</i> promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD). The crystal structure of a dimeric EBD fragment of CysB from <i>Klebsiella aerogenes</i> revealed a protein fold similar to that seen in Lac repressor but with a different symmetry in the dimer so that the mode of DNA binding was not apparent. To elucidate the subunit arrangement in the tetramer, we determined the crystal structure of intact CysB in complex with <i>N</i>-acetylserine. The tetramer has two subunit types that differ in the juxtaposition of their winged helix-turn-helix DNA binding domains with respect to the effector binding domain. In the assembly, the four EBDs form a core with the DNA binding domains arranged in pairs on the surface. <i>N</i>-acetylserine makes extensive polar interactions in an enclosed binding site, and its binding is accompanied by substantial conformational rearrangements of surrounding residues that are propagated to the protein surface where they appear to alter the arrangement of the DNA binding domains. The results are (i) discussed in relation to the extensive mutational data available for CysB and (ii) used to propose a structural mechanism of <i>N</i>-acetylserine induced CysB activation.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"311 - 326"},"PeriodicalIF":2.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s00249-024-01714-y
Jorge A. Vila
Proteins have evolved through mutations—amino acid substitutions—since life appeared on Earth, some 109 years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify ‘typos’ in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of ‘typos’ in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level—by mutations—exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution “descent with modification” and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.
{"title":"Analysis of proteins in the light of mutations","authors":"Jorge A. Vila","doi":"10.1007/s00249-024-01714-y","DOIUrl":"10.1007/s00249-024-01714-y","url":null,"abstract":"<div><p>Proteins have evolved through mutations—amino acid substitutions—since life appeared on Earth, some 10<sup>9</sup> years ago. The study of these phenomena has been of particular significance because of their impact on protein stability, function, and structure. This study offers a new viewpoint on how the most recent findings in these areas can be used to explore the impact of mutations on protein sequence, stability, and evolvability. Preliminary results indicate that: (1) mutations can be viewed as sensitive probes to identify ‘typos’ in the amino-acid sequence, and also to assess the resistance of naturally occurring proteins to unwanted sequence alterations; (2) the presence of ‘typos’ in the amino acid sequence, rather than being an evolutionary obstacle, could promote faster evolvability and, in turn, increase the likelihood of higher protein stability; (3) the mutation site is far more important than the substituted amino acid in terms of the marginal stability changes of the protein, and (4) the unpredictability of protein evolution at the molecular level—by mutations—exists even in the absence of epistasis effects. Finally, the Darwinian concept of evolution “descent with modification” and experimental evidence endorse one of the results of this study, which suggests that some regions of any protein sequence are susceptible to mutations while others are not. This work contributes to our general understanding of protein responses to mutations and may spur significant progress in our efforts to develop methods to accurately forecast changes in protein stability, their propensity for metamorphism, and their ability to evolve.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"255 - 265"},"PeriodicalIF":2.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s00249-024-01713-z
Boris D. Bekono, Pascal Amoa Onguéné, Conrad V. Simoben, Luc C. O. Owono, Fidele Ntie-Kang
To find drugs against COVID-19, caused by the SARS-CoV-2, promising targets include the fusion of the viral spike with the human angiotensin-converting enzyme 2 (ACE2) as well as the main protease (Mpro). These proteins are responsible for viral entry and replication, respectively. We combined several state-of-the-art computational methods, including, protein–ligand interaction fingerprint, 3D-pharmacophores, molecular-docking, MM-GBSA, DFT, and MD simulations to explore two databases: ChEMBL and NANPDB to identify molecules that could both block spike/ACE2 fusion and inhibit Mpro. A total of 1,690,649 compounds from the two databases were screened using the pharmacophore model obtained from PLIF analysis. Five recent complexes of Mpro co-crystallized with different ligands were used to generate the pharmacophore model, allowing 4,829 compounds that passed this prefilter. These were then submitted to molecular docking against Mpro. The 5% top-ranked docking hits from docking result having scores (<) −8.32 kcal mol−1 were selected and then docked against spike/ACE2. Only four compounds: ChEMBL244958, ChEMBL266531, ChEMBL3680003, and 1-methoxy-3-indolymethyl glucosinolate (4) displayed binding energies (<-) 8.21 kcal mol−1 (for the native ligand) were considered as putative dual-target inhibitors. Furthermore, predictive ADMET, MM-GBSA and DFT/6-311G(d,p) were performed on these compounds and compared with those of well-known antivirals. DFT calculations showed that ChEMBL244958 and compound 4 had significant predicted reactivity values. Molecular dynamics simulations of the docked complexes were run for 100 ns and used to validate the stability docked poses and to confirm that these hits are putative dual binders of the spike/ACE2 and the Mpro.
{"title":"Computational discovery of dual potential inhibitors of SARS‐CoV‐2 spike/ACE2 and Mpro: 3D-pharmacophore, docking-based virtual screening, quantum mechanics and molecular dynamics","authors":"Boris D. Bekono, Pascal Amoa Onguéné, Conrad V. Simoben, Luc C. O. Owono, Fidele Ntie-Kang","doi":"10.1007/s00249-024-01713-z","DOIUrl":"10.1007/s00249-024-01713-z","url":null,"abstract":"<div><p>To find drugs against COVID-19, caused by the SARS-CoV-2, promising targets include the fusion of the viral spike with the human angiotensin-converting enzyme 2 (ACE2) as well as the main protease (M<sup>pro</sup>). These proteins are responsible for viral entry and replication, respectively. We combined several state-of-the-art computational methods, including, protein–ligand interaction fingerprint, 3D-pharmacophores, molecular-docking, MM-GBSA, DFT, and MD simulations to explore two databases: ChEMBL and NANPDB to identify molecules that could both block spike/ACE2 fusion and inhibit M<sup>pro</sup>. A total of 1,690,649 compounds from the two databases were screened using the pharmacophore model obtained from PLIF analysis. Five recent complexes of M<sup>pro</sup> co-crystallized with different ligands were used to generate the pharmacophore model, allowing 4,829 compounds that passed this prefilter. These were then submitted to molecular docking against M<sup>pro</sup>. The 5% top-ranked docking hits from docking result having scores <span>(<)</span> −8.32 kcal mol<sup>−1</sup> were selected and then docked against spike/ACE2. Only four compounds: ChEMBL244958, ChEMBL266531, ChEMBL3680003, and 1-methoxy-3-indolymethyl glucosinolate (<b>4</b>) displayed binding energies <span>(<-)</span> 8.21 kcal mol<sup>−1</sup> (for the native ligand) were considered as putative dual-target inhibitors. Furthermore, predictive ADMET, MM-GBSA and DFT/6-311G(d,p) were performed on these compounds and compared with those of well-known antivirals. DFT calculations showed that ChEMBL244958 and compound <b>4</b> had significant predicted reactivity values. Molecular dynamics simulations of the docked complexes were run for 100 ns and used to validate the stability docked poses and to confirm that these hits are putative dual binders of the spike/ACE2 and the M<sup>pro</sup>.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"277 - 298"},"PeriodicalIF":2.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-08DOI: 10.1007/s00249-024-01711-1
Yoshinori Miura
Alamethicin, a peptide consisted of 20 amino acid residues, has been known to function as an antibiotic. The peptides self-associate in biological membranes, form an ion channel, and then induce cell death by leaking intracellular contents through a transmembrane pore of an ion channel. We investigated conformation and its thermal stability of alamethicin-A6 and -U6 in ethanol using proton nuclear magnetic resonance (NMR) spectroscopy; alamethicin-A6 and -U6 have the amino acid sequences of UPUAUAQUVUGLUPVUUQQO and UPUAUUQUVUGLUPVUUQQO, respectively, where U and O represent α-aminoisobutyric acid and phenylalaninol, respectively. As indicated by the under bars in the sequences, only the residue 6 differs between the alamethicins. We show that the alamethicins in ethanol form helix conformation in the region of the residues 2–11 and a non-regular conformation in the regions of the N- and C-termini, and that the helices are maintained up to 66 °C at least. Conformations in the region of the residues 12–18 of the alamethicins, however, are not well identified due to the lack of NMR data. In addition, we demonstrate that the amide proton chemical shift temperature coefficients’ method, which is known as an indicator for intramolecular hydrogen bonds in peptides and proteins in aqueous solutions, can be also applied to the alamethicins in ethanol. Further, we show that the conformation around the C-terminus of alamethicin-A6 is restrained by intramolecular hydrogen bonds, whereas that of alamethicin-U6 is either restrained or unrestrained by intramolecular hydrogen bonds; the alamethicin-U6 molecules having the restrained and unrestrained conformations coexist in ethanol. We discuss the two types of conformations using a model chain consisting of particles linked by rigid bonds called as the free jointed chain.
阿拉米霉素是一种由 20 个氨基酸残基组成的多肽,具有抗生素的功能。这种多肽在生物膜上自我结合,形成离子通道,然后通过离子通道的跨膜孔泄漏细胞内的内容物,诱导细胞死亡。我们利用质子核磁共振(NMR)光谱研究了氨甲蝶呤-A6和-U6在乙醇中的构象及其热稳定性;氨甲蝶呤-A6和-U6的氨基酸序列分别为UPUAUAQUVUGLUPVUUQQO和UPUAUUQUVUGLUPVUUQQO,其中U和O分别代表α-氨基丁酸和苯丙氨醇。如序列中的下栏所示,氨甲蝶呤之间只有残基 6 存在差异。我们的研究表明,乙醇中的氨基甲酸乙酯在残基 2-11 区域形成螺旋构象,在 N 端和 C 端区域形成非规则构象,螺旋构象至少在 66 ℃ 时仍能保持。然而,由于缺乏核磁共振数据,氨甲蝶呤残基 12-18 区域的构象还不能很好地确定。此外,我们还证明了 "酰胺质子化学位移温度系数 "方法也可用于乙醇中的氨甲蝶呤,该方法是众所周知的水溶液中肽和蛋白质分子内氢键的指示器。此外,我们还发现氨甲蝶呤-A6 的 C 端周围构象受到分子内氢键的约束,而氨甲蝶呤-U6 的 C 端周围构象则受到分子内氢键的约束或不受约束;具有受约束和不受约束构象的氨甲蝶呤-U6 分子在乙醇中共存。我们使用由刚性键连接的粒子组成的模型链(称为自由连接链)来讨论这两种构象。
{"title":"The conformational properties of alamethicin in ethanol studied by NMR","authors":"Yoshinori Miura","doi":"10.1007/s00249-024-01711-1","DOIUrl":"10.1007/s00249-024-01711-1","url":null,"abstract":"<div><p>Alamethicin, a peptide consisted of 20 amino acid residues, has been known to function as an antibiotic. The peptides self-associate in biological membranes, form an ion channel, and then induce cell death by leaking intracellular contents through a transmembrane pore of an ion channel. We investigated conformation and its thermal stability of alamethicin-A6 and -U6 in ethanol using proton nuclear magnetic resonance (NMR) spectroscopy; alamethicin-A6 and -U6 have the amino acid sequences of UPUAU<u>A</u>QUVUGLUPVUUQQO and UPUAU<u>U</u>QUVUGLUPVUUQQO, respectively, where U and O represent α-aminoisobutyric acid and phenylalaninol, respectively. As indicated by the under bars in the sequences, only the residue 6 differs between the alamethicins. We show that the alamethicins in ethanol form helix conformation in the region of the residues 2–11 and a non-regular conformation in the regions of the N- and C-termini, and that the helices are maintained up to 66 °C at least. Conformations in the region of the residues 12–18 of the alamethicins, however, are not well identified due to the lack of NMR data. In addition, we demonstrate that the amide proton chemical shift temperature coefficients’ method, which is known as an indicator for intramolecular hydrogen bonds in peptides and proteins in aqueous solutions, can be also applied to the alamethicins in ethanol. Further, we show that the conformation around the C-terminus of alamethicin-A6 is restrained by intramolecular hydrogen bonds, whereas that of alamethicin-U6 is either restrained or unrestrained by intramolecular hydrogen bonds; the alamethicin-U6 molecules having the restrained and unrestrained conformations coexist in ethanol. We discuss the two types of conformations using a model chain consisting of particles linked by rigid bonds called as the free jointed chain.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"267 - 276"},"PeriodicalIF":2.2,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1007/s00249-024-01712-0
Borries Demeler, Denis Gebauer, Emre Brookes, Jeffrey Fagan, Johannes Walter, José García de la Torre, Juan Manuel García-Ruiz, Kristian Schilling, Mengdi Chen, Lukas Dobler, Olwyn Byron, Stephen E. Harding, Thomas Zemb, Tobias Kraus, Tom Laue, Trushar R. Patel
Dr. Helmut Cölfen, an exceptional interdisciplinary scientist, mentor, colleague, and dear friend, passed away in November 2023 at the age of 58. His untimely departure is a profound loss for the fields of analytical ultracentrifugation, colloid, crystallization, and polymer research. This obituary pays tribute to Helmut, honoring his remarkable academic career and contributions to the study of nanochemistry, biophysics, and life sciences. Helmut was renowned for his pioneering research contributions in several key research areas: (1) Development of advanced analytical techniques: Helmut made major contributions to techniques such as analytical ultracentrifugation and field flow fractionation, which are widely utilized to characterize the structure of biomolecules and the growth of nanostructured crystalline materials; (2) Study of nucleation and crystallization processes: Helmut explored the early stages of crystallization which led to the discovery of pre-nucleation clusters and mesocrystal intermediates, in the presence of additives and templates; and (3) Investigation of structure and morphogenesis of mesocrystals, examining their molecular properties.
{"title":"An obituary: Dr. Helmut Cölfen 1965–2023","authors":"Borries Demeler, Denis Gebauer, Emre Brookes, Jeffrey Fagan, Johannes Walter, José García de la Torre, Juan Manuel García-Ruiz, Kristian Schilling, Mengdi Chen, Lukas Dobler, Olwyn Byron, Stephen E. Harding, Thomas Zemb, Tobias Kraus, Tom Laue, Trushar R. Patel","doi":"10.1007/s00249-024-01712-0","DOIUrl":"10.1007/s00249-024-01712-0","url":null,"abstract":"<div><p>Dr. Helmut Cölfen, an exceptional interdisciplinary scientist, mentor, colleague, and dear friend, passed away in November 2023 at the age of 58. His untimely departure is a profound loss for the fields of analytical ultracentrifugation, colloid, crystallization, and polymer research. This obituary pays tribute to Helmut, honoring his remarkable academic career and contributions to the study of nanochemistry, biophysics, and life sciences. Helmut was renowned for his pioneering research contributions in several key research areas: (1) Development of advanced analytical techniques: Helmut made major contributions to techniques such as analytical ultracentrifugation and field flow fractionation, which are widely utilized to characterize the structure of biomolecules and the growth of nanostructured crystalline materials; (2) Study of nucleation and crystallization processes: Helmut explored the early stages of crystallization which led to the discovery of pre-nucleation clusters and mesocrystal intermediates, in the presence of additives and templates; and (3) Investigation of structure and morphogenesis of mesocrystals, examining their molecular properties.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 5-6","pages":"249 - 254"},"PeriodicalIF":2.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1007/s00249-024-01710-2
L. Delmarre, E. Harté, A. Devin, P. Argoul, F. Argoul
Unicellular organisms such as yeast can survive in very different environments, thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a careful decomposition of force–displacement curves, we extract local scaling exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these phenomena based on a two-component elastic system, where each layer follows a different scaling law..
{"title":"Two-layer elastic models for single-yeast compressibility with flat microlevers","authors":"L. Delmarre, E. Harté, A. Devin, P. Argoul, F. Argoul","doi":"10.1007/s00249-024-01710-2","DOIUrl":"10.1007/s00249-024-01710-2","url":null,"abstract":"<div><p>Unicellular organisms such as yeast can survive in very different environments, thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments on single yeast cells (<i>S. cerevisiae</i>) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a careful decomposition of force–displacement curves, we extract local scaling exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these phenomena based on a two-component elastic system, where each layer follows a different scaling law..</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 4","pages":"205 - 224"},"PeriodicalIF":2.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s00249-024-01708-w
Cindy Galindo, Leonid Livshits, Lama Tarabeih, Gregory Barshtein, Sharon Einav, Yuri Feldman
The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5–40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.
{"title":"The effect of ionic redistributions on the microwave dielectric response of cytosol water upon glucose uptake","authors":"Cindy Galindo, Leonid Livshits, Lama Tarabeih, Gregory Barshtein, Sharon Einav, Yuri Feldman","doi":"10.1007/s00249-024-01708-w","DOIUrl":"10.1007/s00249-024-01708-w","url":null,"abstract":"<div><p>The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5–40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca<sup>2+</sup> vs. Ca-free conditions. We also investigate the potential involvement of Na<sup>+</sup>/K<sup>+</sup> redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na<sup>+</sup>/K<sup>+</sup> pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca<sup>2+</sup> in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 4","pages":"183 - 192"},"PeriodicalIF":2.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}