Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.
{"title":"Peptide nucleic acid conjugates and their antimicrobial applications—a mini-review","authors":"Uladzislava Tsylents, Izabela Siekierska, Joanna Trylska","doi":"10.1007/s00249-023-01673-w","DOIUrl":"10.1007/s00249-023-01673-w","url":null,"abstract":"<div><p>Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 6-7","pages":"533 - 544"},"PeriodicalIF":2.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10051921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22DOI: 10.1007/s00249-023-01677-6
Joanna Panecka-Hofman, Ina Poehner
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
{"title":"Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design","authors":"Joanna Panecka-Hofman, Ina Poehner","doi":"10.1007/s00249-023-01677-6","DOIUrl":"10.1007/s00249-023-01677-6","url":null,"abstract":"<div><p>Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 6-7","pages":"521 - 532"},"PeriodicalIF":2.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10407291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-05DOI: 10.1007/s00249-023-01675-8
M. P. Silva, C. G. Rodrigues, D. C. Machado, R. A. Nogueira
The kinetics of an ion channel are classically understood as a random process. However, studies have shown that in complex ion channels, formed by multiple subunits, this process can be deterministic, presenting long-term memory. Staphylococcus aureus α-hemolysin (α-HL) is a toxin that acts as the major factor in Staphylococcus aureus virulence. α-HL is a water-soluble protein capable of forming ion channels into lipid bilayers, by insertion of an amphipathic β-barrel. Here, the α-HL was used as an experimental model to study memory in ion channel kinetics. We applied the approximate entropy (ApEn) approach to analyze randomness and the Detrended Fluctuation Analysis (DFA) to investigate the existence of long memory in α-HL channel kinetics. Single-channel currents were measured through experiments with α-HL channels incorporated in planar lipid bilayers. All experiments were carried out under the following conditions: 1 M NaCl solution, pH 4.5; transmembrane potential of + 40 mV and temperature 25 ± 1 °C. Single-channel currents were recorded in real-time in the memory of a microcomputer coupled to an A/D converter and a patch-clamp amplifier. The conductance value of the α-HL channels was 0.82 ± 0.0025 nS (n = 128). The DFA analysis showed that the kinetics of α-HL channels presents long-term memory (({text{DFA}}_{{upalpha }}) = 0.63 ± 0.04). The ApEn outcomes showed low complexity to dwell times when open (ApEno = 0.5514 ± 0.28) and closed (ApEnc = 0.1145 ± 0.08), corroborating the results of the DFA method.
{"title":"Long-term memory in Staphylococcus aureus α-hemolysin ion channel kinetics","authors":"M. P. Silva, C. G. Rodrigues, D. C. Machado, R. A. Nogueira","doi":"10.1007/s00249-023-01675-8","DOIUrl":"10.1007/s00249-023-01675-8","url":null,"abstract":"<div><p>The kinetics of an ion channel are classically understood as a random process. However, studies have shown that in complex ion channels, formed by multiple subunits, this process can be deterministic, presenting long-term memory. <i>Staphylococcus aureus</i> α-hemolysin (α-HL) is a toxin that acts as the major factor in <i>Staphylococcus aureus</i> virulence. α-HL is a water-soluble protein capable of forming ion channels into lipid bilayers, by insertion of an amphipathic β-barrel. Here, the α-HL was used as an experimental model to study memory in ion channel kinetics. We applied the approximate entropy (ApEn) approach to analyze randomness and the Detrended Fluctuation Analysis (DFA) to investigate the existence of long memory in α-HL channel kinetics. Single-channel currents were measured through experiments with α-HL channels incorporated in planar lipid bilayers. All experiments were carried out under the following conditions: 1 M NaCl solution, pH 4.5; transmembrane potential of + 40 mV and temperature 25 ± 1 °C. Single-channel currents were recorded in real-time in the memory of a microcomputer coupled to an A/D converter and a patch-clamp amplifier. The conductance value of the α-HL channels was 0.82 ± 0.0025 nS (<i>n</i> = 128). The DFA analysis showed that the kinetics of α-HL channels presents long-term memory (<span>({text{DFA}}_{{upalpha }})</span> = 0.63 ± 0.04). The ApEn outcomes showed low complexity to dwell times when open (ApEn<sub>o</sub> = 0.5514 ± 0.28) and closed (ApEn<sub>c</sub> = 0.1145 ± 0.08), corroborating the results of the DFA method.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 8","pages":"661 - 671"},"PeriodicalIF":2.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9941465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s00249-023-01674-9
Borries Demeler, Robert Gilbert, Trushar R. Patel
The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.
{"title":"Proceedings of the 25th Analytical Ultracentrifugation Workshops and Symposium","authors":"Borries Demeler, Robert Gilbert, Trushar R. Patel","doi":"10.1007/s00249-023-01674-9","DOIUrl":"10.1007/s00249-023-01674-9","url":null,"abstract":"<div><p>The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"195 - 201"},"PeriodicalIF":2.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4008302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.1007/s00249-023-01672-x
Maciej Maciejczyk, Maciej Pyrka
8-azaguanine is a triazolopyrimidine nucleobase analog possessing potent antibacterial and antitumor activities, and it has been implicated as a lead molecule in cancer and malaria therapy. Its intrinsic fluorescence properties can be utilized for monitoring its interactions with biological polymers like proteins or nucleic acids. In order to better understand these interactions, it is important to know the tautomeric equilibrium of this compound. In this work, the tautomeric equilibrium of all natural neutral and anionic compound forms (except highly improbable imino-enol tautomers) as well as their methyl derivatives and ribosides was revealed by quantum chemistry methods. It was shown that, as expected, tautomers protonated at positions 1 and 9 dominate neutral forms both in gas phase and in aqueous solution. 8-azaguanines methylated at any position of the triazole ring are protonated at position 1. The computed vertical absorption and emission energies are in very good agreement with the experimental data. They confirm the validity of the assumption that replacing the proton with the methyl group does not significantly change the positions of absorption and fluorescence peaks.
{"title":"Tautomeric equilibrium and spectroscopic properties of 8-azaguanine revealed by quantum chemistry methods","authors":"Maciej Maciejczyk, Maciej Pyrka","doi":"10.1007/s00249-023-01672-x","DOIUrl":"10.1007/s00249-023-01672-x","url":null,"abstract":"<div><p>8-azaguanine is a triazolopyrimidine nucleobase analog possessing potent antibacterial and antitumor activities, and it has been implicated as a lead molecule in cancer and malaria therapy. Its intrinsic fluorescence properties can be utilized for monitoring its interactions with biological polymers like proteins or nucleic acids. In order to better understand these interactions, it is important to know the tautomeric equilibrium of this compound. In this work, the tautomeric equilibrium of all natural neutral and anionic compound forms (except highly improbable imino-enol tautomers) as well as their methyl derivatives and ribosides was revealed by quantum chemistry methods. It was shown that, as expected, tautomers protonated at positions 1 and 9 dominate neutral forms both in gas phase and in aqueous solution. 8-azaguanines methylated at any position of the triazole ring are protonated at position 1. The computed vertical absorption and emission energies are in very good agreement with the experimental data. They confirm the validity of the assumption that replacing the proton with the methyl group does not significantly change the positions of absorption and fluorescence peaks.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 6-7","pages":"545 - 557"},"PeriodicalIF":2.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9885520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.1007/s00249-023-01671-y
Maduni Ranasinghe, Jonathan M. Fogg, Daniel J. Catanese Jr., Lynn Zechiedrich, Borries Demeler
To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.
{"title":"Suitability of double-stranded DNA as a molecular standard for the validation of analytical ultracentrifugation instruments","authors":"Maduni Ranasinghe, Jonathan M. Fogg, Daniel J. Catanese Jr., Lynn Zechiedrich, Borries Demeler","doi":"10.1007/s00249-023-01671-y","DOIUrl":"10.1007/s00249-023-01671-y","url":null,"abstract":"<div><p>To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"267 - 280"},"PeriodicalIF":2.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5043046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.1007/s00249-023-01665-w
Donald J. Winzor, Vlad Dinu, David J. Scott, Stephen E. Harding
This investigation examines the source of the disparity between experimental values of the light scattering second virial coefficient ({A}_{2}) (mL.mol/g2) for proteins and those predicted on the statistical mechanical basis of excluded volume. A much better theoretical description of published results for lysozyme is obtained by considering the experimental parameters to monitor the difference between the thermodynamic excluded volume term and its hydrodynamic counterpart. This involves a combination of parameters quantifying concentration dependence of the translational diffusion coefficient obtained from dynamic light scattering measurements. That finding is shown to account for observations of a strong correlation between ({A}_{2}{M}_{2}) (mL/g), where M2 is the molar mass (molecular weight) of the macromolecule and the diffusion concentration parameter ({k}_{D}) (mL/g). On the grounds that ({k}_{D}) is regarded as a hydrodynamic parameter, the same status should be accorded the light scattering second virial coefficient rather than its current incorrect thermodynamic designation as ({B}_{2}) (mL.mol/g2), or just B, the osmotic second virial coefficient for protein self-interaction.
{"title":"Experimental support for reclassification of the light scattering second virial coefficient from macromolecular solutions as a hydrodynamic parameter","authors":"Donald J. Winzor, Vlad Dinu, David J. Scott, Stephen E. Harding","doi":"10.1007/s00249-023-01665-w","DOIUrl":"10.1007/s00249-023-01665-w","url":null,"abstract":"<div><p>This investigation examines the source of the disparity between experimental values of the light scattering second virial coefficient <span>({A}_{2})</span> (mL.mol/g<sup>2</sup>) for proteins and those predicted on the statistical mechanical basis of excluded volume. A much better theoretical description of published results for lysozyme is obtained by considering the experimental parameters to monitor the difference between the thermodynamic excluded volume term and its hydrodynamic counterpart. This involves a combination of parameters quantifying concentration dependence of the translational diffusion coefficient obtained from dynamic light scattering measurements. That finding is shown to account for observations of a strong correlation between <span>({A}_{2}{M}_{2})</span> (mL/g), where <i>M</i><sub>2</sub> is the molar mass (molecular weight) of the macromolecule and the diffusion concentration parameter <span>({k}_{D})</span> (mL/g). On the grounds that <span>({k}_{D})</span> is regarded as a hydrodynamic parameter, the same status should be accorded the light scattering second virial coefficient rather than its current incorrect thermodynamic designation as <span>({B}_{2})</span> (mL.mol/g<sup>2</sup>), or just <i>B</i>, the osmotic second virial coefficient for protein self-interaction.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"343 - 352"},"PeriodicalIF":2.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01665-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4723022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-12DOI: 10.1007/s00249-023-01668-7
{"title":"14th EBSA congress, July 31 – August 4, 2023, Stockholm, Sweden – Abstracts","authors":"","doi":"10.1007/s00249-023-01668-7","DOIUrl":"10.1007/s00249-023-01668-7","url":null,"abstract":"","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 1","pages":"1 - 220"},"PeriodicalIF":2.0,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4496863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-07DOI: 10.1007/s00249-023-01664-x
Donald J. Winzor, Vlad Dinu, David J. Scott, Stephen E. Harding
This study establishes the existence of substantial agreement between published results from traditional boundary spreading measurements (including synthetic boundary measurements in the analytical ultracenrifuge) on two globular proteins (bovine serum albumin, ovalbumin) and the concentration dependence of diffusion coefficient predicted for experiments conducted under the operative thermodynamic constraints of constant temperature and solvent chemical potential. Although slight negative concentration dependence of the translational diffusion coefficient is the experimentally observed as well as theoretically predicted, the extent of the concentration dependence is within the limits of experimental uncertainty inherent in diffusion coefficient measurement. Attention is then directed toward the ionic strength dependence of the concentration dependence coefficient (({k}_{D})) describing diffusion coefficients obtained by dynamic light scattering, where, in principle, the operative thermodynamic constraints of constant temperature and pressure preclude consideration of results in terms of single-solute theory. Nevertheless, good agreement between predicted and published experimental ionic strength dependencies of ({k}_{D}) for lysozyme and an immunoglobulin is observed by a minor adaptation of the theoretical treatment to accommodate the fact that thermodynamic activity is monitored on the molal concentration scale because of the constraint of constant pressure that pertains in dynamic light scattering experiments.
{"title":"Retrospective rationalization of disparities between the concentration dependence of diffusion coefficients obtained by boundary spreading and dynamic light scattering","authors":"Donald J. Winzor, Vlad Dinu, David J. Scott, Stephen E. Harding","doi":"10.1007/s00249-023-01664-x","DOIUrl":"10.1007/s00249-023-01664-x","url":null,"abstract":"<div><p>This study establishes the existence of substantial agreement between published results from traditional boundary spreading measurements (including synthetic boundary measurements in the analytical ultracenrifuge) on two globular proteins (bovine serum albumin, ovalbumin) and the concentration dependence of diffusion coefficient predicted for experiments conducted under the operative thermodynamic constraints of constant temperature and solvent chemical potential. Although slight negative concentration dependence of the translational diffusion coefficient is the experimentally observed as well as theoretically predicted, the extent of the concentration dependence is within the limits of experimental uncertainty inherent in diffusion coefficient measurement. Attention is then directed toward the ionic strength dependence of the concentration dependence coefficient (<span>({k}_{D})</span>) describing diffusion coefficients obtained by dynamic light scattering, where, in principle, the operative thermodynamic constraints of constant temperature and pressure preclude consideration of results in terms of single-solute theory. Nevertheless, good agreement between predicted and published experimental ionic strength dependencies of <span>({k}_{D})</span> for lysozyme and an immunoglobulin is observed by a minor adaptation of the theoretical treatment to accommodate the fact that thermodynamic activity is monitored on the molal concentration scale because of the constraint of constant pressure that pertains in dynamic light scattering experiments.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"333 - 342"},"PeriodicalIF":2.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01664-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4306114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1007/s00249-023-01670-z
Xuguang Shi
In this study, we consider DNA as a torus knot that is formed by an elastic string. In order to determine what kinds of knot could be formed, we present its energy spectrum by combining Euler rotation, DNA’s mechanical properties, and the modified Faddeev–Skyrme model. Our results theoretically demonstrated that the flexural rigidity of DNA plays an important role. If it is smaller than a critical value, DNA is likely to form a coiled structure. Conversely, above the critical value, DNA forms a twisting structure. The energy spectrum provides a way to identify the types of knots that are most likely to be created by DNA, according to the principle of energy minimisation, and with implications for its functional and packaging states in the cell nucleus.
{"title":"Energy spectrum of the ideal DNA knot on a torus","authors":"Xuguang Shi","doi":"10.1007/s00249-023-01670-z","DOIUrl":"10.1007/s00249-023-01670-z","url":null,"abstract":"<div><p>In this study, we consider DNA as a torus knot that is formed by an elastic string. In order to determine what kinds of knot could be formed, we present its energy spectrum by combining Euler rotation, DNA’s mechanical properties, and the modified Faddeev–Skyrme model. Our results theoretically demonstrated that the flexural rigidity of DNA plays an important role. If it is smaller than a critical value, DNA is likely to form a coiled structure. Conversely, above the critical value, DNA forms a twisting structure. The energy spectrum provides a way to identify the types of knots that are most likely to be created by DNA, according to the principle of energy minimisation, and with implications for its functional and packaging states in the cell nucleus.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 8","pages":"651 - 660"},"PeriodicalIF":2.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10088427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}