Spread spectrum technology has been widely employed for positioning and communicating with autonomous underwater vehicles (AUVs), but conventional spread spectrum sequences lack confidentiality and reliability in UWA channel. Considering the limitations of conventional sequences and the characteristics of underwater acoustic (UWA) channel, a composite chaotic orthogonal sequence (CCOS) based on the UWA channel is proposed. The confidentiality of the CCOS is superior to that of the m-sequence, while the autocorrelation performance of the CCOS is superior to that of the orthogonal sequence. Moreover, the CCOS can compensate for the imbalance of logistic chaotic sequence when assigned certain initial values. Acquisition is a crucial component of accessing the spread spectrum signal; therefore, the acquisition performance indicates the applicability of the CCOS. The source–target model is established to simulate communication with an underwater moving target. To simulate the acquisition process, a parallel algorithm based on fast Fourier transform is adopted, and the entire simulation process is completed based on the BELLHOP ray acoustic model. Through data processing, the Doppler shift error is less than half of the frequency-search element. Furthermore, the acquisition probabilities of the CCOS with different numbers of bits are over 90%, which demonstrates the reliability of the CCOS.
扩频技术已被广泛应用于自主潜水器(AUV)的定位和通信,但传统的扩频序列在UWA信道中缺乏保密性和可靠性。考虑到传统序列的局限性和水下声学(UWA)信道的特点,本文提出了一种基于 UWA 信道的复合混沌正交序列(CCOS)。CCOS 的保密性优于 m 序列,而自相关性能则优于正交序列。此外,当赋予 CCOS 一定的初始值时,它还能补偿逻辑混沌序列的不平衡性。采集是获取扩频信号的关键环节,因此采集性能表明了 CCOS 的适用性。建立源-目标模型是为了模拟与水下移动目标的通信。为了模拟采集过程,采用了基于快速傅立叶变换的并行算法,整个模拟过程基于 BELLHOP 射线声学模型完成。通过数据处理,多普勒频移误差小于寻频要素的一半。此外,不同位数的 CCOS 的获取概率均超过 90%,证明了 CCOS 的可靠性。
{"title":"A composite spread spectrum sequence for underwater acoustic signal acquisition","authors":"Chenyu Zhang, Huabing Wu","doi":"10.1049/cmu2.12782","DOIUrl":"10.1049/cmu2.12782","url":null,"abstract":"<p>Spread spectrum technology has been widely employed for positioning and communicating with autonomous underwater vehicles (AUVs), but conventional spread spectrum sequences lack confidentiality and reliability in UWA channel. Considering the limitations of conventional sequences and the characteristics of underwater acoustic (UWA) channel, a composite chaotic orthogonal sequence (CCOS) based on the UWA channel is proposed. The confidentiality of the CCOS is superior to that of the m-sequence, while the autocorrelation performance of the CCOS is superior to that of the orthogonal sequence. Moreover, the CCOS can compensate for the imbalance of logistic chaotic sequence when assigned certain initial values. Acquisition is a crucial component of accessing the spread spectrum signal; therefore, the acquisition performance indicates the applicability of the CCOS. The source–target model is established to simulate communication with an underwater moving target. To simulate the acquisition process, a parallel algorithm based on fast Fourier transform is adopted, and the entire simulation process is completed based on the BELLHOP ray acoustic model. Through data processing, the Doppler shift error is less than half of the frequency-search element. Furthermore, the acquisition probabilities of the CCOS with different numbers of bits are over 90%, which demonstrates the reliability of the CCOS.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 11","pages":"689-700"},"PeriodicalIF":1.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper studies the problem of joint deployment, user association, channel, and resource allocation in unmanned aerial vehicle-enabled access network. Since different user equipments performing different tasks and have different data rate requirements, the priority-based traffic fairness problem is investigated. This problem, however, is a mixed integer nonlinear programming problem with NP-hard complexity, making it challenging to be solved. To address this issue, a self-organized and distributed framework “sense-as-you-fly” based on the decomposition process, which divides the original problem into several subproblems, is proposed. Assuming without central controller, we derive the closed-form resource allocation scheme and propose distributed many-to-one matching to optimize user association subproblem. Considering the coupled characteristics, the multi-unmanned aerial vehicle deployment and channel allocation subproblems are modelled as a local altruistic game. The existence of Nash equilibrium is proved with the aid of exact potential game and efficient best response learning-based algorithm is proposed. The original problem is finally addressed by solving the sub-problems alternately and iteratively. Simulation results verify its effectiveness. By jointly optimizing multidimensional variables, the proposed algorithm unlocks network performance gains, especially in resource-limited regimes.
{"title":"Joint optimization of deployment, user association, channel, and resource allocation for fairness-aware multi-UAV network","authors":"Weihao Sun, Hai Wang, Zhen Qin, Zichao Qin","doi":"10.1049/cmu2.12791","DOIUrl":"10.1049/cmu2.12791","url":null,"abstract":"<p>This paper studies the problem of joint deployment, user association, channel, and resource allocation in unmanned aerial vehicle-enabled access network. Since different user equipments performing different tasks and have different data rate requirements, the priority-based traffic fairness problem is investigated. This problem, however, is a mixed integer nonlinear programming problem with NP-hard complexity, making it challenging to be solved. To address this issue, a self-organized and distributed framework “sense-as-you-fly” based on the decomposition process, which divides the original problem into several subproblems, is proposed. Assuming without central controller, we derive the closed-form resource allocation scheme and propose distributed many-to-one matching to optimize user association subproblem. Considering the coupled characteristics, the multi-unmanned aerial vehicle deployment and channel allocation subproblems are modelled as a local altruistic game. The existence of Nash equilibrium is proved with the aid of exact potential game and efficient best response learning-based algorithm is proposed. The original problem is finally addressed by solving the sub-problems alternately and iteratively. Simulation results verify its effectiveness. By jointly optimizing multidimensional variables, the proposed algorithm unlocks network performance gains, especially in resource-limited regimes.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 13","pages":"799-816"},"PeriodicalIF":1.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141381726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A wireless sensor network (WSN) consists of specialized sensor nodes that perform sensing services for Internet of Things devices with limited battery power. As the replacement or recharging of batteries is not possible, energy consumption becomes the most important design issue in WSNs. The energy-efficient routing protocol gets the most priority in such energy-constrained networks. The utilization of clustering-based routing protocols like stable election protocol (SEP) has gained much attention as the network's lifetime is significantly improved due to the clustering of sensor nodes. Moreover, the inclusion of a secondary CH (SCH) is beneficial when the member node with the most remaining energy performs data aggregation and reduces the energy burden of the CH. This article characterizes SEP and Prolong SEP (P-SEP) protocols and then extends them by incorporating SCH, which ensures balanced energy consumption. The performance of the proposed Extended SEP and Extended P-SEP protocols has been analysed regarding stability period, network lifetime, energy usage and throughput. The simulation results demonstrate that the proposed protocols outperform state-of-the-art protocols like P-SEP, Modified SEP (M-SEP) and SEP. In particular, the stability period of Extended SEP and Extended P-SEP has improved up to 42% and 89%, respectively, compared to M-SEP.
{"title":"Secondary cluster head based SEP in heterogeneous WSNs for IoT applications","authors":"Arif Hossan, Jahidul Islam","doi":"10.1049/cmu2.12780","DOIUrl":"10.1049/cmu2.12780","url":null,"abstract":"<p>A wireless sensor network (WSN) consists of specialized sensor nodes that perform sensing services for Internet of Things devices with limited battery power. As the replacement or recharging of batteries is not possible, energy consumption becomes the most important design issue in WSNs. The energy-efficient routing protocol gets the most priority in such energy-constrained networks. The utilization of clustering-based routing protocols like stable election protocol (SEP) has gained much attention as the network's lifetime is significantly improved due to the clustering of sensor nodes. Moreover, the inclusion of a secondary CH (SCH) is beneficial when the member node with the most remaining energy performs data aggregation and reduces the energy burden of the CH. This article characterizes SEP and Prolong SEP (P-SEP) protocols and then extends them by incorporating SCH, which ensures balanced energy consumption. The performance of the proposed Extended SEP and Extended P-SEP protocols has been analysed regarding stability period, network lifetime, energy usage and throughput. The simulation results demonstrate that the proposed protocols outperform state-of-the-art protocols like P-SEP, Modified SEP (M-SEP) and SEP. In particular, the stability period of Extended SEP and Extended P-SEP has improved up to 42% and 89%, respectively, compared to M-SEP.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 11","pages":"679-688"},"PeriodicalIF":1.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12780","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunping Mu, Chaochao Yao, Dian Fan, Yongjun Xu, Gongpu Wang, Marjan Milošević, Bo Ai
Backscatter communications, which originated from World War II, have been widely applied in the logistics domain, and recently attract emerging interest from both academic and industrial circles. Here, the backscatter communication systems equipped with retrodirective arrays that can re-transmit the impinging signals back toward the direction of incidence are studied so as to reduce the power loss of the signals. Specifically, the authors consider the tag is equipped with retrodirective arrays to improve reliability and enhance communication range. The probability density function of channel coefficients is then derived. Next, a channel estimator based on Bayesian theory is proposed to acquire the modulus values of channel parameters and calculate its Bayesian Cramer–Rao Lower Bound. Finally, simulation results are provided to corroborate these theoretical studies.
{"title":"Channel estimation for backscatter communication systems with retrodirective arrays","authors":"Yunping Mu, Chaochao Yao, Dian Fan, Yongjun Xu, Gongpu Wang, Marjan Milošević, Bo Ai","doi":"10.1049/cmu2.12777","DOIUrl":"10.1049/cmu2.12777","url":null,"abstract":"<p>Backscatter communications, which originated from World War II, have been widely applied in the logistics domain, and recently attract emerging interest from both academic and industrial circles. Here, the backscatter communication systems equipped with retrodirective arrays that can re-transmit the impinging signals back toward the direction of incidence are studied so as to reduce the power loss of the signals. Specifically, the authors consider the tag is equipped with retrodirective arrays to improve reliability and enhance communication range. The probability density function of channel coefficients is then derived. Next, a channel estimator based on Bayesian theory is proposed to acquire the modulus values of channel parameters and calculate its Bayesian Cramer–Rao Lower Bound. Finally, simulation results are provided to corroborate these theoretical studies.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 11","pages":"671-678"},"PeriodicalIF":1.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, fast time-varying channels of high-mobility vehicle-to-vehicle communications for massive multiple-input multiple-output orthogonal frequency division multiplexing systems are considered. Large-scale uniform linear arrays are configured at the transmitter and receiver to separate multiple angle domain Doppler frequency offsets based on transmit and receive beamforming with high spatial resolution. Then, each beamforming branch comprises only one dominant Doppler frequency offset. Next, the conventional channel estimation method is performed for each beamforming branch, and carry out maximum-ratio-combining for data detection. Power spectrum density and Doppler spread of the equivalent link between the transmitter and receiver are derived and regarded as the criterion for assessing the residual channel time variation caused by limited antennas in practice. Interestingly, a scaling law between the asymptotic Doppler spread and the number of transceiver antennas shows that asymptotic Doppler spread is proportional to the maximum Doppler frequency offset and decreases at the rate of