首页 > 最新文献

IEICE Transactions on Information and Systems最新文献

英文 中文
Feedback Node Sets in Pancake Graphs and Burnt Pancake Graphs 煎饼图和烧焦煎饼图中的反馈节点集
4区 计算机科学 Q3 Engineering Pub Date : 2023-10-01 DOI: 10.1587/transinf.2022edp7211
Sinyu JUNG, Keiichi KANEKO
A feedback node set (FNS) of a graph is a subset of the nodes of the graph whose deletion makes the residual graph acyclic. By finding an FNS in an interconnection network, we can set a check point at each node in it to avoid a livelock configuration. Hence, to find an FNS is a critical issue to enhance the dependability of a parallel computing system. In this paper, we propose a method to find FNS's in n-pancake graphs and n-burnt pancake graphs. By analyzing the types of cycles proposed in our method, we also give the number of the nodes in the FNS in an n-pancake graph, (n-2.875)(n-1)!+1.5(n-3)!, and that in an n-burnt pancake graph, 2n-1(n-1)!(n-3.5).
图的反馈节点集(FNS)是图中节点的子集,这些节点的删除使残差图无环。通过在互连网络中找到一个FNS,我们可以在其中的每个节点上设置一个检查点,以避免活锁配置。因此,寻找一个FNS是提高并行计算系统可靠性的关键问题。本文提出了一种求n-煎饼图和n-烧焦煎饼图中FNS的方法。通过分析我们的方法中提出的循环类型,我们还给出了n-煎饼图中FNS的节点数,(n-2.875)(n-1)!+1.5(n-3)!,在n次烧饼图中,有2n-1(n-1)!(n-3.5)。
{"title":"Feedback Node Sets in Pancake Graphs and Burnt Pancake Graphs","authors":"Sinyu JUNG, Keiichi KANEKO","doi":"10.1587/transinf.2022edp7211","DOIUrl":"https://doi.org/10.1587/transinf.2022edp7211","url":null,"abstract":"A feedback node set (FNS) of a graph is a subset of the nodes of the graph whose deletion makes the residual graph acyclic. By finding an FNS in an interconnection network, we can set a check point at each node in it to avoid a livelock configuration. Hence, to find an FNS is a critical issue to enhance the dependability of a parallel computing system. In this paper, we propose a method to find FNS's in n-pancake graphs and n-burnt pancake graphs. By analyzing the types of cycles proposed in our method, we also give the number of the nodes in the FNS in an n-pancake graph, (n-2.875)(n-1)!+1.5(n-3)!, and that in an n-burnt pancake graph, 2n-1(n-1)!(n-3.5).","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Important Notice of the Cancellation of Special Section on Formal Approaches 关于取消正式申请特别部分的重要通知
4区 计算机科学 Q3 Engineering Pub Date : 2023-10-01 DOI: 10.1587/transinf.2022fop0000
{"title":"Important Notice of the Cancellation of Special Section on Formal Approaches","authors":"","doi":"10.1587/transinf.2022fop0000","DOIUrl":"https://doi.org/10.1587/transinf.2022fop0000","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfigurable Pedestrian Detection System Using Deep Learning for Video Surveillance 基于深度学习的视频监控可重构行人检测系统
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2019edl8132
M. K. Jeevarajan, P. N. Kumar
{"title":"Reconfigurable Pedestrian Detection System Using Deep Learning for Video Surveillance","authors":"M. K. Jeevarajan, P. N. Kumar","doi":"10.1587/transinf.2019edl8132","DOIUrl":"https://doi.org/10.1587/transinf.2019edl8132","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67308393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Framework of Measuring Engagement with Access Logs Under Tracking Prevention for Affiliate Services 关联服务跟踪预防下访问日志参与度度量框架
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022ofp0001
Motoi Iwashita, Hirotaka Sugita
{"title":"Framework of Measuring Engagement with Access Logs Under Tracking Prevention for Affiliate Services","authors":"Motoi Iwashita, Hirotaka Sugita","doi":"10.1587/transinf.2022ofp0001","DOIUrl":"https://doi.org/10.1587/transinf.2022ofp0001","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67309110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discriminative Question Answering via Cascade Prompt Learning and Sentence Level Attention Mechanism 基于级联提示学习和句子级注意机制的辨别性问题回答
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022edp7225
Xiaoguang Yuan, Chaofan Dai, Zongkai Tian, Xinyu Fan, Yingyi Song, Ze Yu, Peifeng Wang, Wenjun Ke
{"title":"Discriminative Question Answering via Cascade Prompt Learning and Sentence Level Attention Mechanism","authors":"Xiaoguang Yuan, Chaofan Dai, Zongkai Tian, Xinyu Fan, Yingyi Song, Ze Yu, Peifeng Wang, Wenjun Ke","doi":"10.1587/transinf.2022edp7225","DOIUrl":"https://doi.org/10.1587/transinf.2022edp7225","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67308904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Price Rank Prediction of a Company by Utilizing Data Mining Methods on Financial Disclosures 基于财务披露数据挖掘方法的公司价格排名预测
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022ofp0002
Mustafa Sami Kacar, Semih Yumusak, H. Kodaz
{"title":"Price Rank Prediction of a Company by Utilizing Data Mining Methods on Financial Disclosures","authors":"Mustafa Sami Kacar, Semih Yumusak, H. Kodaz","doi":"10.1587/transinf.2022ofp0002","DOIUrl":"https://doi.org/10.1587/transinf.2022ofp0002","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67309122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Gradient Descent Training Under Data Augmentation with On-Line Noisy Copies 在线噪声副本数据增强下的梯度下降训练
4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2023edp7008
Katsuyuki HAGIWARA
In machine learning, data augmentation (DA) is a technique for improving the generalization performance of models. In this paper, we mainly consider gradient descent of linear regression under DA using noisy copies of datasets, in which noise is injected into inputs. We analyze the situation where noisy copies are newly generated and injected into inputs at each epoch, i.e., the case of using on-line noisy copies. Therefore, this article can also be viewed as an analysis on a method using noise injection into a training process by DA. We considered the training process under three training situations which are the full-batch training under the sum of squared errors, and full-batch and mini-batch training under the mean squared error. We showed that, in all cases, training for DA with on-line copies is approximately equivalent to the ℓ2 regularization training for which variance of injected noise is important, whereas the number of copies is not. Moreover, we showed that DA with on-line copies apparently leads to an increase of learning rate in full-batch condition under the sum of squared errors and the mini-batch condition under the mean squared error. The apparent increase in learning rate and regularization effect can be attributed to the original input and additive noise in noisy copies, respectively. These results are confirmed in a numerical experiment in which we found that our result can be applied to usual off-line DA in an under-parameterization scenario and can not in an over-parametrization scenario. Moreover, we experimentally investigated the training process of neural networks under DA with off-line noisy copies and found that our analysis on linear regression can be qualitatively applied to neural networks.
在机器学习中,数据增强(data augmentation, DA)是一种提高模型泛化性能的技术。在本文中,我们主要考虑使用数据集的噪声副本的线性回归的梯度下降,其中噪声被注入到输入中。我们分析了新生成的噪声副本并在每个epoch注入输入的情况,即使用在线噪声副本的情况。因此,本文也可以看作是对一种利用数据挖掘将噪声注入到训练过程中的方法的分析。我们考虑了三种训练情况下的训练过程,即平方和误差下的全批训练和均方误差下的全批和小批训练。结果表明,在所有情况下,具有在线副本的数据分析训练近似等同于l2正则化训练,其中注入噪声的方差是重要的,而副本的数量则不是。此外,我们还发现在线副本的数据处理在平方和误差下的全批条件下和均方误差下的小批条件下明显导致学习率的提高。学习率和正则化效果的显著提高可分别归因于原始输入和噪声副本中的加性噪声。这些结果在数值实验中得到了证实,我们发现我们的结果可以应用于低参数化情况下的常规离线数据分析,而不能应用于高参数化情况。此外,我们还通过实验研究了具有离线噪声副本的DA下神经网络的训练过程,发现我们的线性回归分析可以定性地应用于神经网络。
{"title":"On Gradient Descent Training Under Data Augmentation with On-Line Noisy Copies","authors":"Katsuyuki HAGIWARA","doi":"10.1587/transinf.2023edp7008","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7008","url":null,"abstract":"In machine learning, data augmentation (DA) is a technique for improving the generalization performance of models. In this paper, we mainly consider gradient descent of linear regression under DA using noisy copies of datasets, in which noise is injected into inputs. We analyze the situation where noisy copies are newly generated and injected into inputs at each epoch, i.e., the case of using on-line noisy copies. Therefore, this article can also be viewed as an analysis on a method using noise injection into a training process by DA. We considered the training process under three training situations which are the full-batch training under the sum of squared errors, and full-batch and mini-batch training under the mean squared error. We showed that, in all cases, training for DA with on-line copies is approximately equivalent to the ℓ2 regularization training for which variance of injected noise is important, whereas the number of copies is not. Moreover, we showed that DA with on-line copies apparently leads to an increase of learning rate in full-batch condition under the sum of squared errors and the mini-batch condition under the mean squared error. The apparent increase in learning rate and regularization effect can be attributed to the original input and additive noise in noisy copies, respectively. These results are confirmed in a numerical experiment in which we found that our result can be applied to usual off-line DA in an under-parameterization scenario and can not in an over-parametrization scenario. Moreover, we experimentally investigated the training process of neural networks under DA with off-line noisy copies and found that our analysis on linear regression can be qualitatively applied to neural networks.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136310000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IoT Modeling and Verification: From the CaIT Calculus to UPPAAL 物联网建模与验证:从CaIT演算到UPPAAL
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022edp7223
Ningning Chen, Huibiao Zhu
{"title":"IoT Modeling and Verification: From the CaIT Calculus to UPPAAL","authors":"Ningning Chen, Huibiao Zhu","doi":"10.1587/transinf.2022edp7223","DOIUrl":"https://doi.org/10.1587/transinf.2022edp7223","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67308895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protection Mechanism of Kernel Data Using Memory Protection Key 使用内存保护键的内核数据保护机制
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022icp0013
Hiroki Kuzuno, Toshihiro Yamauchi
{"title":"Protection Mechanism of Kernel Data Using Memory Protection Key","authors":"Hiroki Kuzuno, Toshihiro Yamauchi","doi":"10.1587/transinf.2022icp0013","DOIUrl":"https://doi.org/10.1587/transinf.2022icp0013","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67308796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Large-Scale Investigation into the Possibility of Malware Infection of IoT Devices with Weak Credentials 对弱凭证物联网设备感染恶意软件可能性的大规模调查
IF 0.7 4区 计算机科学 Q3 Engineering Pub Date : 2023-09-01 DOI: 10.1587/transinf.2022ict0001
Kosuke Murakami, Takahiro Kasama, D. Inoue
{"title":"A Large-Scale Investigation into the Possibility of Malware Infection of IoT Devices with Weak Credentials","authors":"Kosuke Murakami, Takahiro Kasama, D. Inoue","doi":"10.1587/transinf.2022ict0001","DOIUrl":"https://doi.org/10.1587/transinf.2022ict0001","url":null,"abstract":"","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67308483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
IEICE Transactions on Information and Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1