Pub Date : 2023-11-01DOI: 10.1587/transinf.2023edp7117
Ye TIAN, Mei HAN, Jinyi ZHANG
This paper mainly proposes a line segment detection method based on pseudo peak suppression and local Hough transform, which has good noise resistance and can solve the problems of short line segment missing detection, false detection, and oversegmentation. In addition, in response to the phenomenon of uneven development in nuclear emulsion tomographic images, this paper proposes an image preprocessing process that uses the “Difference of Gaussian” method to reduce noise and then uses the standard deviation of the gray value of each pixel to bundle and unify the gray value of each pixel, which can robustly obtain the linear features in these images. The tests on the actual dataset of nuclear emulsion tomographic images and the public YorkUrban dataset show that the proposed method can effectively improve the accuracy of convolutional neural network or vision in transformer-based event classification for alpha-decay events in nuclear emulsion. In particular, the line segment detection method in the proposed method achieves optimal results in both accuracy and processing speed, which also has strong generalization ability in high quality natural images.
{"title":"Line Segment Detection Based on False Peak Suppression and Local Hough Transform and Application to Nuclear Emulsion","authors":"Ye TIAN, Mei HAN, Jinyi ZHANG","doi":"10.1587/transinf.2023edp7117","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7117","url":null,"abstract":"This paper mainly proposes a line segment detection method based on pseudo peak suppression and local Hough transform, which has good noise resistance and can solve the problems of short line segment missing detection, false detection, and oversegmentation. In addition, in response to the phenomenon of uneven development in nuclear emulsion tomographic images, this paper proposes an image preprocessing process that uses the “Difference of Gaussian” method to reduce noise and then uses the standard deviation of the gray value of each pixel to bundle and unify the gray value of each pixel, which can robustly obtain the linear features in these images. The tests on the actual dataset of nuclear emulsion tomographic images and the public YorkUrban dataset show that the proposed method can effectively improve the accuracy of convolutional neural network or vision in transformer-based event classification for alpha-decay events in nuclear emulsion. In particular, the line segment detection method in the proposed method achieves optimal results in both accuracy and processing speed, which also has strong generalization ability in high quality natural images.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1587/transinf.2022edp7216
KuanChao CHU, Hideki NAKAYAMA
We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.
{"title":"Two-Path Object Knowledge Injection for Detecting Novel Objects With Single-Stage Dense Detector","authors":"KuanChao CHU, Hideki NAKAYAMA","doi":"10.1587/transinf.2022edp7216","DOIUrl":"https://doi.org/10.1587/transinf.2022edp7216","url":null,"abstract":"We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1587/transinf.2023edp7093
Shugang LIU, Yujie WANG, Qiangguo YU, Jie ZHAN, Hongli LIU, Jiangtao LIU
Driver fatigue detection has become crucial in vehicle safety technology. Achieving high accuracy and real-time performance in detecting driver fatigue is paramount. In this paper, we propose a novel driver fatigue detection algorithm based on dynamic tracking of Facial Eyes and Yawning using YOLOv7, named FEY-YOLOv7. The Coordinate Attention module is inserted into YOLOv7 to enhance its dynamic tracking accuracy by focusing on coordinate information. Additionally, a small target detection head is incorporated into the network architecture to promote the feature extraction ability of small facial targets such as eyes and mouth. In terms of compution, the YOLOv7 network architecture is significantly simplified to achieve high detection speed. Using the proposed PERYAWN algorithm, driver status is labeled and detected by four classes: open_eye, closed_eye, open_mouth, and closed_mouth. Furthermore, the Guided Image Filtering algorithm is employed to enhance image details. The proposed FEY-YOLOv7 is trained and validated on RGB-infrared datasets. The results show that FEY-YOLOv7 has achieved mAP of 0.983 and FPS of 101. This indicates that FEY-YOLOv7 is superior to state-of-the-art methods in accuracy and speed, providing an effective and practical solution for image-based driver fatigue detection.
{"title":"A Driver Fatigue Detection Algorithm Based on Dynamic Tracking of Small Facial Targets Using YOLOv7","authors":"Shugang LIU, Yujie WANG, Qiangguo YU, Jie ZHAN, Hongli LIU, Jiangtao LIU","doi":"10.1587/transinf.2023edp7093","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7093","url":null,"abstract":"Driver fatigue detection has become crucial in vehicle safety technology. Achieving high accuracy and real-time performance in detecting driver fatigue is paramount. In this paper, we propose a novel driver fatigue detection algorithm based on dynamic tracking of Facial Eyes and Yawning using YOLOv7, named FEY-YOLOv7. The Coordinate Attention module is inserted into YOLOv7 to enhance its dynamic tracking accuracy by focusing on coordinate information. Additionally, a small target detection head is incorporated into the network architecture to promote the feature extraction ability of small facial targets such as eyes and mouth. In terms of compution, the YOLOv7 network architecture is significantly simplified to achieve high detection speed. Using the proposed PERYAWN algorithm, driver status is labeled and detected by four classes: open_eye, closed_eye, open_mouth, and closed_mouth. Furthermore, the Guided Image Filtering algorithm is employed to enhance image details. The proposed FEY-YOLOv7 is trained and validated on RGB-infrared datasets. The results show that FEY-YOLOv7 has achieved mAP of 0.983 and FPS of 101. This indicates that FEY-YOLOv7 is superior to state-of-the-art methods in accuracy and speed, providing an effective and practical solution for image-based driver fatigue detection.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135162075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The maximal independent set (MIS) problem is one of the most fundamental problems in the field of distributed computing. This paper focuses on the MIS problem with unreliable communication between processes in the system. We propose a relaxed notion of MIS, named almost MIS (ALMIS), and show that the loosely-stabilizing algorithm proposed in our previous work can achieve exponentially long holding time with logarithmic convergence time and space complexity regarding ALMIS, which cannot be achieved at the same time regarding MIS in our previous work.
{"title":"Loosely-Stabilizing Algorithm on Almost Maximal Independent Set","authors":"Rongcheng DONG, Taisuke IZUMI, Naoki KITAMURA, Yuichi SUDO, Toshimitsu MASUZAWA","doi":"10.1587/transinf.2023edp7075","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7075","url":null,"abstract":"The maximal independent set (MIS) problem is one of the most fundamental problems in the field of distributed computing. This paper focuses on the MIS problem with unreliable communication between processes in the system. We propose a relaxed notion of MIS, named almost MIS (ALMIS), and show that the loosely-stabilizing algorithm proposed in our previous work can achieve exponentially long holding time with logarithmic convergence time and space complexity regarding ALMIS, which cannot be achieved at the same time regarding MIS in our previous work.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a typical surface defect of tunnel lining structures, cracking disease affects the durability of tunnel structures and poses hidden dangers to tunnel driving safety. Factors such as interference from the complex service environment of the tunnel and the low signal-to-noise ratio of the crack targets themselves, have led to existing crack recognition methods based on semantic segmentation being unable to meet actual engineering needs. Based on this, this paper uses the Unet network as the basic framework for crack identification and proposes to construct a multi-kernel convolution cascade enhancement (MKCE) model to achieve accurate detection and identification of crack diseases. First of all, to ensure the performance of crack feature extraction, the model modified the main feature extraction network in the basic framework to ResNet-50 residual network. Compared with the VGG-16 network, this modification can extract richer crack detail features while reducing model parameters. Secondly, considering that the Unet network cannot effectively perceive multi-scale crack features in the skip connection stage, a multi-kernel convolution cascade enhancement module is proposed by combining a cascaded connection of multi-kernel convolution groups and multi-expansion rate dilated convolution groups. This module achieves a comprehensive perception of local details and the global content of tunnel lining cracks. In addition, to better weaken the effect of tunnel background clutter interference, a convolutional block attention calculation module is further introduced after the multi-kernel convolution cascade enhancement module, which effectively reduces the false alarm rate of crack recognition. The algorithm is tested on a large number of subway tunnel crack image datasets. The experimental results show that, compared with other crack recognition algorithms based on deep learning, the method in this paper has achieved the best results in terms of accuracy and intersection over union (IoU) indicators, which verifies the method in this paper has better applicability.
{"title":"Visual Inspection Method for Subway Tunnel Cracks Based on Multi-Kernel Convolution Cascade Enhancement Learning","authors":"Baoxian WANG, Zhihao DONG, Yuzhao WANG, Shoupeng QIN, Zhao TAN, Weigang ZHAO, Wei-Xin REN, Junfang WANG","doi":"10.1587/transinf.2023edp7073","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7073","url":null,"abstract":"As a typical surface defect of tunnel lining structures, cracking disease affects the durability of tunnel structures and poses hidden dangers to tunnel driving safety. Factors such as interference from the complex service environment of the tunnel and the low signal-to-noise ratio of the crack targets themselves, have led to existing crack recognition methods based on semantic segmentation being unable to meet actual engineering needs. Based on this, this paper uses the Unet network as the basic framework for crack identification and proposes to construct a multi-kernel convolution cascade enhancement (MKCE) model to achieve accurate detection and identification of crack diseases. First of all, to ensure the performance of crack feature extraction, the model modified the main feature extraction network in the basic framework to ResNet-50 residual network. Compared with the VGG-16 network, this modification can extract richer crack detail features while reducing model parameters. Secondly, considering that the Unet network cannot effectively perceive multi-scale crack features in the skip connection stage, a multi-kernel convolution cascade enhancement module is proposed by combining a cascaded connection of multi-kernel convolution groups and multi-expansion rate dilated convolution groups. This module achieves a comprehensive perception of local details and the global content of tunnel lining cracks. In addition, to better weaken the effect of tunnel background clutter interference, a convolutional block attention calculation module is further introduced after the multi-kernel convolution cascade enhancement module, which effectively reduces the false alarm rate of crack recognition. The algorithm is tested on a large number of subway tunnel crack image datasets. The experimental results show that, compared with other crack recognition algorithms based on deep learning, the method in this paper has achieved the best results in terms of accuracy and intersection over union (IoU) indicators, which verifies the method in this paper has better applicability.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1587/transinf.2023edp7017
Takehiro TAKAYANAGI, Kiyoshi IZUMI
Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations.
{"title":"Context-Aware Stock Recommendations with Stocks' Characteristics and Investors' Traits","authors":"Takehiro TAKAYANAGI, Kiyoshi IZUMI","doi":"10.1587/transinf.2023edp7017","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7017","url":null,"abstract":"Personalized stock recommendations aim to suggest stocks tailored to individual investor needs, significantly aiding the financial decision making of an investor. This study shows the advantages of incorporating context into personalized stock recommendation systems. We embed item contextual information such as technical indicators, fundamental factors, and business activities of individual stocks. Simultaneously, we consider user contextual information such as investors' personality traits, behavioral characteristics, and attributes to create a comprehensive investor profile. Our model incorporating contextual information, validated on novel stock recommendation tasks, demonstrated a notable improvement over baseline models when incorporating these contextual features. Consistent outperformance across various hyperparameters further underscores the robustness and utility of our model in integrating stocks' features and investors' traits into personalized stock recommendations.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1587/transinf.2023pcp0007
Onhi KATO, Akira KUBOTA
Various haze removal methods based on the atmospheric scattering model have been presented in recent years. Most methods have targeted strong haze images where light is scattered equally in all color channels. This paper presents a haze removal method using near-infrared (NIR) images for relatively weak haze images. In order to recover the lost edges, the presented method first extracts edges from an appropriately weighted NIR image and fuses it with the color image. By introducing a wavelength-dependent scattering model, our method then estimates the transmission map for each color channel and recovers the color more naturally from the edge-recovered image. Finally, the edge-recovered and the color-recovered images are blended. In this blending process, the regions with high lightness, such as sky and clouds, where unnatural color shifts are likely to occur, are effectively estimated, and the optimal weighting map is obtained. Our qualitative and quantitative evaluations using 59 pairs of color and NIR images demonstrated that our method can recover edges and colors more naturally in weak haze images than conventional methods.
{"title":"Fusion-Based Edge and Color Recovery Using Weighted Near-Infrared Image and Color Transmission Maps for Robust Haze Removal","authors":"Onhi KATO, Akira KUBOTA","doi":"10.1587/transinf.2023pcp0007","DOIUrl":"https://doi.org/10.1587/transinf.2023pcp0007","url":null,"abstract":"Various haze removal methods based on the atmospheric scattering model have been presented in recent years. Most methods have targeted strong haze images where light is scattered equally in all color channels. This paper presents a haze removal method using near-infrared (NIR) images for relatively weak haze images. In order to recover the lost edges, the presented method first extracts edges from an appropriately weighted NIR image and fuses it with the color image. By introducing a wavelength-dependent scattering model, our method then estimates the transmission map for each color channel and recovers the color more naturally from the edge-recovered image. Finally, the edge-recovered and the color-recovered images are blended. In this blending process, the regions with high lightness, such as sky and clouds, where unnatural color shifts are likely to occur, are effectively estimated, and the optimal weighting map is obtained. Our qualitative and quantitative evaluations using 59 pairs of color and NIR images demonstrated that our method can recover edges and colors more naturally in weak haze images than conventional methods.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1587/transinf.2023edl8016
Hongli ZHANG, Jinglei LIU
With the emergence of a large quantity of data in science and industry, it is urgent to improve the prediction accuracy and reduce the high complexity of Gaussian process regression (GPR). However, the traditional global approximation and local approximation have corresponding shortcomings, such as global approximation tends to ignore local features, and local approximation has the problem of over-fitting. In order to solve these problems, a large-scale Gaussian process regression algorithm (RFFLT) combining random Fourier features (RFF) and local approximation is proposed. 1) In order to speed up the training time, we use the random Fourier feature map input data mapped to the random low-dimensional feature space for processing. The main innovation of the algorithm is to design features by using existing fast linear processing methods, so that the inner product of the transformed data is approximately equal to the inner product in the feature space of the shift invariant kernel specified by the user. 2) The generalized robust Bayesian committee machine (GRBCM) based on Tsallis mutual information method is used in local approximation, which enhances the flexibility of the model and generates a sparse representation of the expert weight distribution compared with previous work. The algorithm RFFLT was tested on six real data sets, which greatly shortened the time of regression prediction and improved the prediction accuracy.
随着科学和工业中大量数据的出现,提高高斯过程回归(Gaussian process regression, GPR)的预测精度和降低其高复杂性已成为迫切需要解决的问题。然而,传统的全局近似和局部近似都存在相应的缺点,如全局近似容易忽略局部特征,局部近似存在过拟合问题。为了解决这些问题,提出了一种结合随机傅立叶特征(RFF)和局部近似的大规模高斯过程回归算法。1)为了加快训练时间,我们使用随机傅立叶特征映射将输入数据映射到随机低维特征空间进行处理。该算法的主要创新之处在于利用现有的快速线性处理方法设计特征,使变换后的数据的内积近似等于用户指定的移位不变核特征空间内的内积。2)采用基于Tsallis互信息方法的广义鲁棒贝叶斯委员会机(GRBCM)进行局部逼近,增强了模型的灵活性,与前人相比,生成了专家权重分布的稀疏表示。RFFLT算法在6个真实数据集上进行了测试,大大缩短了回归预测时间,提高了预测精度。
{"title":"Large-Scale Gaussian Process Regression Based on Random Fourier Features and Local Approximation with Tsallis Entropy","authors":"Hongli ZHANG, Jinglei LIU","doi":"10.1587/transinf.2023edl8016","DOIUrl":"https://doi.org/10.1587/transinf.2023edl8016","url":null,"abstract":"With the emergence of a large quantity of data in science and industry, it is urgent to improve the prediction accuracy and reduce the high complexity of Gaussian process regression (GPR). However, the traditional global approximation and local approximation have corresponding shortcomings, such as global approximation tends to ignore local features, and local approximation has the problem of over-fitting. In order to solve these problems, a large-scale Gaussian process regression algorithm (RFFLT) combining random Fourier features (RFF) and local approximation is proposed. 1) In order to speed up the training time, we use the random Fourier feature map input data mapped to the random low-dimensional feature space for processing. The main innovation of the algorithm is to design features by using existing fast linear processing methods, so that the inner product of the transformed data is approximately equal to the inner product in the feature space of the shift invariant kernel specified by the user. 2) The generalized robust Bayesian committee machine (GRBCM) based on Tsallis mutual information method is used in local approximation, which enhances the flexibility of the model and generates a sparse representation of the expert weight distribution compared with previous work. The algorithm RFFLT was tested on six real data sets, which greatly shortened the time of regression prediction and improved the prediction accuracy.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135369905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1587/transinf.2023pcp0006
Akira KUBOTA, Kazuya KODAMA, Daiki TAMURA, Asami ITO
Focal stacks (FS) have attracted attention as an alternative representation of light field (LF). However, the problem of reconstructing LF from its FS is considered ill-posed. Although many regularization methods have been discussed, no method has been proposed to solve this problem perfectly. This paper showed that the LF can be perfectly reconstructed from the FS through a filter bank in theory for Lambertian scenes without occlusion if the camera aperture for acquiring the FS is a Cauchy function. The numerical simulation demonstrated that the filter bank allows perfect reconstruction of the LF.
{"title":"Filter Bank for Perfect Reconstruction of Light Field from Its Focal Stack","authors":"Akira KUBOTA, Kazuya KODAMA, Daiki TAMURA, Asami ITO","doi":"10.1587/transinf.2023pcp0006","DOIUrl":"https://doi.org/10.1587/transinf.2023pcp0006","url":null,"abstract":"Focal stacks (FS) have attracted attention as an alternative representation of light field (LF). However, the problem of reconstructing LF from its FS is considered ill-posed. Although many regularization methods have been discussed, no method has been proposed to solve this problem perfectly. This paper showed that the LF can be perfectly reconstructed from the FS through a filter bank in theory for Lambertian scenes without occlusion if the camera aperture for acquiring the FS is a Cauchy function. The numerical simulation demonstrated that the filter bank allows perfect reconstruction of the LF.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1587/transinf.2023edl8014
Jonghyeok YOU, Heesoo KIM, Kilho LEE
This paper proposes a fault-resilient ROS platform supporting rapid fault detection and recovery. The platform employs heartbeat-based fault detection and node replication-based recovery. Our prototype implementation on top of the ROS Melodic shows a great performance in evaluations with a Nvidia development board and an inverted pendulum device.
{"title":"Fault-Resilient Robot Operating System Supporting Rapid Fault Recovery with Node Replication","authors":"Jonghyeok YOU, Heesoo KIM, Kilho LEE","doi":"10.1587/transinf.2023edl8014","DOIUrl":"https://doi.org/10.1587/transinf.2023edl8014","url":null,"abstract":"This paper proposes a fault-resilient ROS platform supporting rapid fault detection and recovery. The platform employs heartbeat-based fault detection and node replication-based recovery. Our prototype implementation on top of the ROS Melodic shows a great performance in evaluations with a Nvidia development board and an inverted pendulum device.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}