首页 > 最新文献

Fortschritte Der Physik-Progress of Physics最新文献

英文 中文
Exact Evaluation of Hexagonal Spin-Networks for Topological Quantum Neural Networks 拓扑量子神经网络六方自旋网络的精确评价
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-20 DOI: 10.1002/prop.70005
Matteo Lulli, Antonino Marcianò, Emanuele Zappala

The physical scalar product between spin-networks has been shown to be a fundamental tool in the theory of topological quantum neural networks (TQNNs). These are a class of quantum neural networks supported on graphs and related to topological quantum field theory (TQFT), which have been previously introduced by the authors, recovering deep neural networks (DNNs) as their semiclassical limit. However, the effective evaluation of the scalar product remains an obstacle for the applicability of the theory. Inspired by decimation techniques for the computation of the partition function in statistical mechanics, an analytical technique is introduced for the exact evaluation of hexagonal spin-networks of arbitrary size, and describe the corresponding algorithm for the evaluation of the physical scalar product defined by Noui and Perez. The transition amplitudes on certain classes of spin-networks with both classical and quantum recoupling are investigated, obtaining a “continuous” spectrum of the transitions for the former and a discrete one for the latter. The theoretical and computational framework is expected to impact applications in string/tensor-networks for solid state physics, lattice gauge theories, and quantum gravity approaches.

自旋网络之间的物理标量积已被证明是拓扑量子神经网络(TQNNs)理论中的一个基本工具。这是一类基于图的量子神经网络,与拓扑量子场论(TQFT)相关,作者之前已经介绍过,恢复深度神经网络(dnn)作为其半经典极限。然而,标量积的有效求值仍然是制约该理论应用的一个障碍。受统计力学中计算配分函数的抽取技术的启发,介绍了一种精确计算任意大小的六角形自旋网络的解析技术,并描述了Noui和Perez定义的物理标量积的计算算法。研究了具有经典重偶和量子重偶的自旋网络的跃迁振幅,得到了经典重偶和量子重偶的自旋网络的连续跃迁频谱和量子重偶的离散跃迁频谱。理论和计算框架有望影响固体物理、晶格规范理论和量子引力方法的弦/张量网络的应用。
{"title":"Exact Evaluation of Hexagonal Spin-Networks for Topological Quantum Neural Networks","authors":"Matteo Lulli,&nbsp;Antonino Marcianò,&nbsp;Emanuele Zappala","doi":"10.1002/prop.70005","DOIUrl":"https://doi.org/10.1002/prop.70005","url":null,"abstract":"<p>The physical scalar product between spin-networks has been shown to be a fundamental tool in the theory of topological quantum neural networks (TQNNs). These are a class of quantum neural networks supported on graphs and related to topological quantum field theory (TQFT), which have been previously introduced by the authors, recovering deep neural networks (DNNs) as their semiclassical limit. However, the effective evaluation of the scalar product remains an obstacle for the applicability of the theory. Inspired by decimation techniques for the computation of the partition function in statistical mechanics, an analytical technique is introduced for the exact evaluation of hexagonal spin-networks of arbitrary size, and describe the corresponding algorithm for the evaluation of the physical scalar product defined by Noui and Perez. The transition amplitudes on certain classes of spin-networks with both classical and quantum recoupling are investigated, obtaining a “continuous” spectrum of the transitions for the former and a discrete one for the latter. The theoretical and computational framework is expected to impact applications in string/tensor-networks for solid state physics, lattice gauge theories, and quantum gravity approaches.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144256375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of Deformed AdS-Schwarzschild Black Holes in the Presence of Thermal Fluctuations 热波动下变形ads -史瓦西黑洞的热力学
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-18 DOI: 10.1002/prop.70004
Dhruba Jyoti Gogoi, Poppy Hazarika, Jyatsnasree Bora, Ranjan Changmai

This paper examines the thermodynamic properties and stability of deformed AdS-Schwarzschild black holes, focusing on the effects of deformation (α$alpha$) and thermal correction parameters (β1$beta _1$, β2$beta _2$) on phase transitions and heat capacity. The results show that higher α$alpha$ values raise the Hawking-Page critical temperature, enhancing thermal stability. Thermal corrections significantly affect smaller black holes but minimally impact larger ones, leaving second-order phase transitions unchanged. Heat capacity analysis identifies stability regions, with sign changes marking instability. These findings highlight the role of deformation and thermal corrections in black hole stability, offering insights for extending our understanding of black hole thermodynamics.

本文研究了变形ads -史瓦西黑洞的热力学性质和稳定性,重点研究了变形(α $alpha$)和热校正参数(β 1 $beta _1$,β 2 $beta _2$)对相变和热容的影响。结果表明,α $alpha$值越高,霍金-佩奇临界温度越高,热稳定性越好。热修正对较小的黑洞影响显著,但对较大的黑洞影响最小,使二阶相变保持不变。热容分析确定稳定区域,用符号变化表示不稳定。这些发现突出了变形和热修正在黑洞稳定性中的作用,为扩展我们对黑洞热力学的理解提供了见解。
{"title":"Thermodynamics of Deformed AdS-Schwarzschild Black Holes in the Presence of Thermal Fluctuations","authors":"Dhruba Jyoti Gogoi,&nbsp;Poppy Hazarika,&nbsp;Jyatsnasree Bora,&nbsp;Ranjan Changmai","doi":"10.1002/prop.70004","DOIUrl":"https://doi.org/10.1002/prop.70004","url":null,"abstract":"<p>This paper examines the thermodynamic properties and stability of deformed AdS-Schwarzschild black holes, focusing on the effects of deformation (<span></span><math>\u0000 <semantics>\u0000 <mi>α</mi>\u0000 <annotation>$alpha$</annotation>\u0000 </semantics></math>) and thermal correction parameters (<span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>β</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>$beta _1$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>β</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$beta _2$</annotation>\u0000 </semantics></math>) on phase transitions and heat capacity. The results show that higher <span></span><math>\u0000 <semantics>\u0000 <mi>α</mi>\u0000 <annotation>$alpha$</annotation>\u0000 </semantics></math> values raise the Hawking-Page critical temperature, enhancing thermal stability. Thermal corrections significantly affect smaller black holes but minimally impact larger ones, leaving second-order phase transitions unchanged. Heat capacity analysis identifies stability regions, with sign changes marking instability. These findings highlight the role of deformation and thermal corrections in black hole stability, offering insights for extending our understanding of black hole thermodynamics.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144255965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Fortschritte der Physik 4 / 2025 问题信息:物理进展4 / 2025
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-07 DOI: 10.1002/prop.70002
{"title":"Issue Information: Fortschritte der Physik 4 / 2025","authors":"","doi":"10.1002/prop.70002","DOIUrl":"https://doi.org/10.1002/prop.70002","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 4","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Fluctuation on the Worldsheet of Probe String in BTZ Black Hole BTZ黑洞中探测弦世界表上的量子涨落
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-04-01 DOI: 10.1002/prop.70001
Yu-Ting Zhou, Xiao-Mei Kuang

In this paper, the authors investigate the second-order normal quantum fluctuation on the worldsheet of a probe string in the Bañados–Teitelboim–Zanelli (BTZ) black hole. These fluctuations is treated as the projection of Hawking radiation on the worldsheet and indeed modify the action growth of the string. Then in the string field theory/boundary conformal field theory framework, via the boundary vertex operator, the authors study the correlation function of the Schrödinger functional of excited fields on the worldsheet and further extract the field's formula. This study could shed light on the potential connection between complexity growth and correlation function.

本文研究了Bañados-Teitelboim-Zanelli (BTZ)黑洞中探针弦世界表上的二阶正态量子涨落。这些波动被视为霍金辐射在世界表上的投影,并且确实改变了弦的作用增长。然后在弦场论/边界共形场论的框架下,通过边界顶点算子,研究了世界表上激发场Schrödinger泛函的相关函数,并进一步提取了场的公式。该研究有助于揭示复杂性增长与相关函数之间的潜在联系。
{"title":"Quantum Fluctuation on the Worldsheet of Probe String in BTZ Black Hole","authors":"Yu-Ting Zhou,&nbsp;Xiao-Mei Kuang","doi":"10.1002/prop.70001","DOIUrl":"https://doi.org/10.1002/prop.70001","url":null,"abstract":"<p>In this paper, the authors investigate the second-order normal quantum fluctuation on the worldsheet of a probe string in the Bañados–Teitelboim–Zanelli (BTZ) black hole. These fluctuations is treated as the projection of Hawking radiation on the worldsheet and indeed modify the action growth of the string. Then in the string field theory/boundary conformal field theory framework, via the boundary vertex operator, the authors study the correlation function of the Schrödinger functional of excited fields on the worldsheet and further extract the field's formula. This study could shed light on the potential connection between complexity growth and correlation function.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical Introduction to Action-Dependent Field Theories 动作依赖场理论的实践导论
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-31 DOI: 10.1002/prop.70000
Manuel de León, Jordi Gaset Rifà, Miguel C. Muñoz-Lecanda, Xavier Rivas, Narciso Román-Roy

Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: multicontact geometry. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and (2+1)$(2+1)$-dimensional gravity and Chern–Simons equation.

动作依赖场论是拉格朗日量或哈密顿量依赖于编码动作的新变量的系统。他们建立了一个更大的场论模型,包括非保守行为,同时保持了一个定义良好的对称概念和诺特定理。这使得它们特别适合于开放系统。在概念介绍后,快速介绍了一个新的数学框架的动作依赖场理论:多接触几何。形式主义用各种动作相关的拉格朗日量来说明,其中一些是正则的,另一些是奇异的,这些拉格朗日量是从著名的理论中推导出来的,这些理论的拉格朗日量已经被修改为包含动作相关的项。在拉格朗日和哈密顿两种形式下给出了详细的计算,包括奇异情况下的约束算法。这些是一维波动方程,Klein-Gordon方程和电报员方程,麦克斯韦电磁学,度量仿射引力,热方程和Burgers方程,玻色子弦理论,以及(2+1)$(2+1)$维引力和chen - simons方程。
{"title":"Practical Introduction to Action-Dependent Field Theories","authors":"Manuel de León,&nbsp;Jordi Gaset Rifà,&nbsp;Miguel C. Muñoz-Lecanda,&nbsp;Xavier Rivas,&nbsp;Narciso Román-Roy","doi":"10.1002/prop.70000","DOIUrl":"https://doi.org/10.1002/prop.70000","url":null,"abstract":"<p>Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: <i>multicontact geometry</i>. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(2+1)$</annotation>\u0000 </semantics></math>-dimensional gravity and Chern–Simons equation.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Fortschritte der Physik 3 / 2025 检索日期:2015-05-25。
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-09 DOI: 10.1002/prop.202502001
{"title":"Issue Information: Fortschritte der Physik 3 / 2025","authors":"","doi":"10.1002/prop.202502001","DOIUrl":"https://doi.org/10.1002/prop.202502001","url":null,"abstract":"","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 3","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202502001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmological Dynamics of Interacting Dark Energy and Dark Matter in f ( Q ) $f(Q)$ Gravity f(Q)$ f(Q)$引力中暗能量和暗物质相互作用的宇宙学动力学
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.1002/prop.202400205
Gaurav N. Gadbail, Simran Arora, Phongpichit Channuie, P. K. Sahoo
<p>In this work, the behavior of interacting dark energy (DE) and dark matter (DM) within a model of <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <annotation>$f(Q)$</annotation> </semantics></math> gravity is explored, employing the standard framework of dynamical system analysis. The power-law <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <annotation>$f(Q)$</annotation> </semantics></math> model is considered, incorporating two different forms of interacting DE and DM: <span></span><math> <semantics> <mrow> <mn>3</mn> <mi>α</mi> <mi>H</mi> <msub> <mi>ρ</mi> <mi>m</mi> </msub> </mrow> <annotation>$3alpha Hrho _m$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <mfrac> <mi>α</mi> <mrow> <mn>3</mn> <mi>H</mi> </mrow> </mfrac> <msub> <mi>ρ</mi> <mi>m</mi> </msub> <msub> <mi>ρ</mi> <mtext>DE</mtext> </msub> </mrow> <annotation>$frac{alpha }{3H}rho _m rho _{text{DE}}$</annotation> </semantics></math>. The evolution of <span></span><math> <semantics> <msub> <mi>Ω</mi> <mi>m</mi> </msub> <annotation>$Omega _m$</annotation> </semantics></math>, <span></span><math> <semantics> <msub> <mi>Ω</mi> <mi>r</mi> </msub> <annotation>$Omega _r$</annotation> </semantics></math>, <span></span><math> <semantics> <msub> <mi>Ω</mi> <mtext>DE</mtext> </msub> <annotation>$Omega _{text{DE}}$</annotation> </semantics></math>, <span></span><math> <semantics> <mi>q</mi> <annotation>$q$</annotation> </semantics></math>, and <span></span><
在这项工作中,利用动力系统分析的标准框架,探讨了f (Q) $f(Q)$重力模型中暗能量(DE)和暗物质(DM)相互作用的行为。考虑幂律f (Q) $f(Q)$模型,其中包含两种不同形式的相互作用DE和DM:3 α H ρ m $3alpha Hrho _m$和α 3hρ m ρ DE $frac{alpha }{3H}rho _m rho _{text{DE}}$。Ω m $Omega _m$, Ω r $Omega _r$, Ω DE $Omega _{text{DE}}$,考察了模型参数n $n$和相互作用参数α $alpha$取值不同时的Q $q$和ω $omega$。结果表明,宇宙在早期阶段以物质为主,在后期阶段将以DE为主。分析表明,不动点是稳定的,代表de Sitter和quintessence加速解。发现f (Q) $f(Q)$ DE模型中宇宙的动力学分布受到相互作用项和相关模型参数的影响。
{"title":"Cosmological Dynamics of Interacting Dark Energy and Dark Matter in \u0000 \u0000 \u0000 f\u0000 (\u0000 Q\u0000 )\u0000 \u0000 $f(Q)$\u0000 Gravity","authors":"Gaurav N. Gadbail,&nbsp;Simran Arora,&nbsp;Phongpichit Channuie,&nbsp;P. K. Sahoo","doi":"10.1002/prop.202400205","DOIUrl":"https://doi.org/10.1002/prop.202400205","url":null,"abstract":"&lt;p&gt;In this work, the behavior of interacting dark energy (DE) and dark matter (DM) within a model of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; gravity is explored, employing the standard framework of dynamical system analysis. The power-law &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f(Q)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; model is considered, incorporating two different forms of interacting DE and DM: &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$3alpha Hrho _m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;mtext&gt;DE&lt;/mtext&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$frac{alpha }{3H}rho _m rho _{text{DE}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The evolution of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Omega _m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Omega _r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mtext&gt;DE&lt;/mtext&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Omega _{text{DE}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;annotation&gt;$q$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and &lt;span&gt;&lt;/span&gt;&lt;","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202400205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Second Post-Newtonian Motion in Sen Spacetime 后牛顿时空中的第二次运动
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-01 DOI: 10.1002/prop.202400236
Wei Gao, Xiaoyan Zhu, Wenbin Lin, Siming Liu

Based on the Sen spacetime, the orbital energy and angular momentum are calculated, and the solution for the motion of a test particle derived to the second post-Newtonian order. The effect of the Sen black hole's charge qm$q_{m}$ on the periastron advance and orbital period is obtained. In particular, it is found that qm$q_{m}$ has an influence on perihelion precession at both the first and second post-Newtonian orders, whereas its effect on the orbital period is confined solely to the second post-Newtonian order. Finally, the precession of the star S2 is used to constrain our model and the value of qm/M$q_m/M$ is 0.51.

基于Sen时空,计算了轨道能量和角动量,推导出了测试粒子运动的后牛顿二阶解。得到了森黑洞的电荷q m $q_{m}$对其近星推进和轨道周期的影响。特别地,我们发现q m $q_{m}$对近日点进动在一阶和二阶后牛顿阶上都有影响,而它对轨道周期的影响仅局限于二阶后牛顿阶。最后,利用恒星S2的岁差来约束我们的模型,qm / m $q_m/ m $的值为0.51。
{"title":"The Second Post-Newtonian Motion in Sen Spacetime","authors":"Wei Gao,&nbsp;Xiaoyan Zhu,&nbsp;Wenbin Lin,&nbsp;Siming Liu","doi":"10.1002/prop.202400236","DOIUrl":"https://doi.org/10.1002/prop.202400236","url":null,"abstract":"<p>Based on the Sen spacetime, the orbital energy and angular momentum are calculated, and the solution for the motion of a test particle derived to the second post-Newtonian order. The effect of the Sen black hole's charge <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <annotation>$q_{m}$</annotation>\u0000 </semantics></math> on the periastron advance and orbital period is obtained. In particular, it is found that <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <annotation>$q_{m}$</annotation>\u0000 </semantics></math> has an influence on perihelion precession at both the first and second post-Newtonian orders, whereas its effect on the orbital period is confined solely to the second post-Newtonian order. Finally, the precession of the star S2 is used to constrain our model and the value of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <mo>/</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$q_m/M$</annotation>\u0000 </semantics></math> is 0.51.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higgs Inflation and the Electroweak Gauge Sector 希格斯膨胀和电弱测量部门
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-03-01 DOI: 10.1002/prop.202500020
Stephon Alexander, Cyril Creque-Sarbinowski, Humberto Gilmer, Katherine Freese
<p>We introduce a method that allows the Higgs to be the inflaton. The Higgs is considered as a pseudo-Nambu-Goldstone (pNG) boson of a global coset symmetry <span></span><math> <semantics> <mrow> <mi>G</mi> <mo>/</mo> <mi>H</mi> </mrow> <annotation>$G/H$</annotation> </semantics></math>, which is spontaneously breaks at an energy scale <span></span><math> <semantics> <mrow> <mo>∼</mo> <mn>4</mn> <mi>π</mi> <mi>f</mi> </mrow> <annotation>$sim 4pi f$</annotation> </semantics></math>. A suitable <span></span><math> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> <mo>⊂</mo> <mi>G</mi> </mrow> <annotation>$SU(2) subset G$</annotation> </semantics></math> Chern−Simons (CS) interaction is given to it, with <span></span><math> <semantics> <mi>β</mi> <annotation>$beta$</annotation> </semantics></math> representing the dimensionless CS coupling strength and <span></span><math> <semantics> <mi>f</mi> <annotation>$f$</annotation> </semantics></math> an <span></span><math> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <annotation>$SU(2)$</annotation> </semantics></math> decay constant. As a result, slow-roll inflation occurs via <span></span><math> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <annotation>$SU(2)$</annotation> </semantics></math>-induced friction down a steep sinusoidal potential. To obey electroweak <span></span><math> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>L</mi> </msub> <mo>×</mo> <mi>U</mi> <msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mr
我们引入了一种允许希格斯粒子成为膨胀子的方法。希格斯玻色子被认为是具有全局协集对称G / H $G/H$的伪南布-戈德斯通(pNG)玻色子,它在能量尺度~ 4 π f $sim 4pi f$自发破断。给出一个合适的s2(2)∧G $SU(2) subset G$ Chern−Simons (CS)相互作用;其中β $beta$为无因次CS耦合强度,f $f$和S U (2) $SU(2)$为衰减常数。结果,慢滚膨胀发生通过S U (2) $SU(2)$ -诱导的摩擦下一个陡峭的正弦电位。服从电弱S U (2) L × U (1) Y$SU(2)_{rm L}times U(1)_Y$对称时,最低阶CS相互作用要求在希格斯粒子中是二次的,耦合强度∝β 2 / f2 $propto beta ^2/f^2$。高阶相互作用项在近似pNG移位对称下保持全拉格朗日量几乎不变。采用最简单的对称余量S U (5) / S O (5) $SU(5)/SO(5)$,N $N$ e $e$ -当N≈60 g / 0.64 2时发生膨胀褶皱β / 3 × 10 × 8 / 3 f /5 × 10 11 GeV 2 / 3 $N approx 60 left(g/0.64right)^2left[beta /left(3times 10^6right)right]^{8/3}left[f/left(5times 10^{11} {rm GeV}right)right]^{2/3}$。成功地解释暴胀需要很小的衰变常数,f > 5 × 10 11 GeV $f lesssim 5 times 10^{11} {rm GeV}$;这反过来又需要大的β $beta$,这被电偶极子测量排除了。 尽管电弱层次问题在成功实现暴胀的同时,真正的好处在于提供了一种不同的途径,在标准修正引力框架之外,将希格斯粒子识别为暴胀子。
{"title":"Higgs Inflation and the Electroweak Gauge Sector","authors":"Stephon Alexander,&nbsp;Cyril Creque-Sarbinowski,&nbsp;Humberto Gilmer,&nbsp;Katherine Freese","doi":"10.1002/prop.202500020","DOIUrl":"https://doi.org/10.1002/prop.202500020","url":null,"abstract":"&lt;p&gt;We introduce a method that allows the Higgs to be the inflaton. The Higgs is considered as a pseudo-Nambu-Goldstone (pNG) boson of a global coset symmetry &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G/H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, which is spontaneously breaks at an energy scale &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∼&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$sim 4pi f$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. A suitable &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$SU(2) subset G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; Chern−Simons (CS) interaction is given to it, with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;annotation&gt;$beta$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; representing the dimensionless CS coupling strength and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;annotation&gt;$f$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$SU(2)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; decay constant. As a result, slow-roll inflation occurs via &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$SU(2)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-induced friction down a steep sinusoidal potential. To obey electroweak &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;U&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mr","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143926070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Entanglement Wedge Duality and Hilbert Space Factorization in AdS/CFT, Karch–Randall Braneworld and Black Hole Physics AdS/CFT、Karch-Randall Braneworld和黑洞物理中的纠缠楔形对偶和Hilbert空间分解
IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1002/prop.202400194
Minseong Kim

The entanglement wedge duality in AdS/CFT, Karch–Randall braneworld and black hole (BH) physics is discussed, critically (as in critiques) revolving around Terashima (2024) and Mathur (2009). Emphasis are placed on the semiclassicality requirement and potential breakdown of bulk-wise effective Hilbert space factorization between the BH exterior and the interior, supported by various examples. In particular, a simple quasi-paradox for the entanglement wedge duality in AdS/BCFT is put forward, suggesting that it is not possible to have all of semiclassicality, the entanglement wedge duality and bulk-wise Hilbert space factorization in Karch–Randall braneworld. Giving up factorization, a toy qudit model of BCFT is developed as to derive purification of the BH exterior, despite mostly sharing the setup with the small corrections theorem of Mathur (2009). Put together, the entanglement wedge duality is yet to be disproved despite some results by Terashima, and a toy qudit model cannot disprove semiclassicality in BH physics. The precise understanding of the duality also helps identify how the BH information paradox is dissolved within double holography beyond Karch–Randall braneworld setups.

围绕着Terashima(2024)和Mathur(2009),讨论了AdS/CFT、Karch-Randall膜世界和黑洞(BH)物理中的纠缠楔形对偶性。重点放在黑洞外部和内部之间的体积有效希尔伯特空间分解的半经典性要求和潜在的分解上,并得到各种例子的支持。特别地,我们提出了AdS/BCFT中纠缠楔形对偶的一个简单拟悖论,表明在Karch-Randall膜世界中不可能拥有所有的半经典性、纠缠楔形对偶和体积希尔伯特空间分解。放弃因式分解,开发了BCFT的一个玩具qudit模型来推导黑洞外部的净化,尽管它的设置与Mathur(2009)的小修正定理基本相同。综上所述,尽管Terashima得出了一些结果,但纠缠楔形二象性还没有被证伪,而且一个玩具量子位模型也不能证伪黑洞物理中的半经典性。对二象性的精确理解也有助于确定黑洞信息悖论是如何在超越Karch-Randall膜世界设置的双全息中被溶解的。
{"title":"The Entanglement Wedge Duality and Hilbert Space Factorization in AdS/CFT, Karch–Randall Braneworld and Black Hole Physics","authors":"Minseong Kim","doi":"10.1002/prop.202400194","DOIUrl":"https://doi.org/10.1002/prop.202400194","url":null,"abstract":"<p>The entanglement wedge duality in AdS/CFT, Karch–Randall braneworld and black hole (BH) physics is discussed, critically (as in critiques) revolving around Terashima (2024) and Mathur (2009). Emphasis are placed on the semiclassicality requirement and potential breakdown of bulk-wise effective Hilbert space factorization between the BH exterior and the interior, supported by various examples. In particular, a simple quasi-paradox for the entanglement wedge duality in AdS/BCFT is put forward, suggesting that it is not possible to have all of semiclassicality, the entanglement wedge duality and bulk-wise Hilbert space factorization in Karch–Randall braneworld. Giving up factorization, a toy qudit model of BCFT is developed as to derive purification of the BH exterior, despite mostly sharing the setup with the small corrections theorem of Mathur (2009). Put together, the entanglement wedge duality is yet to be disproved despite some results by Terashima, and a toy qudit model cannot disprove semiclassicality in BH physics. The precise understanding of the duality also helps identify how the BH information paradox is dissolved within double holography beyond Karch–Randall braneworld setups.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fortschritte Der Physik-Progress of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1