Pub Date : 2024-05-01Epub Date: 2024-02-07DOI: 10.1097/MOH.0000000000000808
Shilpa Kuttikrishnan, Kirti S Prabhu, Abdul Q Khan, Shahab Uddin
Purpose of review: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis.
Recent findings: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation.
Summary: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.
{"title":"Signaling networks guiding erythropoiesis.","authors":"Shilpa Kuttikrishnan, Kirti S Prabhu, Abdul Q Khan, Shahab Uddin","doi":"10.1097/MOH.0000000000000808","DOIUrl":"10.1097/MOH.0000000000000808","url":null,"abstract":"<p><strong>Purpose of review: </strong>Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis.</p><p><strong>Recent findings: </strong>The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation.</p><p><strong>Summary: </strong>A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"89-95"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-06DOI: 10.1097/MOH.0000000000000805
Katsue Suzuki-Inoue, Nagaharu Tsukiji
Purpose of review: Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation.
Findings: CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes.
Summary: The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.
{"title":"A role of platelet C-type lectin-like receptor-2 and its ligand podoplanin in vascular biology.","authors":"Katsue Suzuki-Inoue, Nagaharu Tsukiji","doi":"10.1097/MOH.0000000000000805","DOIUrl":"10.1097/MOH.0000000000000805","url":null,"abstract":"<p><strong>Purpose of review: </strong>Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation.</p><p><strong>Findings: </strong>CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes.</p><p><strong>Summary: </strong>The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"130-139"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-13DOI: 10.1097/MOH.0000000000000810
Naomi Gunawardena, Stella T Chou
Purpose of review: Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use.
Recent findings: For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes.
Summary: Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.
{"title":"Generation of red blood cells from induced pluripotent stem cells.","authors":"Naomi Gunawardena, Stella T Chou","doi":"10.1097/MOH.0000000000000810","DOIUrl":"10.1097/MOH.0000000000000810","url":null,"abstract":"<p><strong>Purpose of review: </strong>Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use.</p><p><strong>Recent findings: </strong>For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes.</p><p><strong>Summary: </strong>Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"115-121"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1097/moh.0000000000000819
Santhosh Kumar Pasupuleti, Reuben Kapur
This review meticulously delves into existing literature and recent findings to elucidate the intricate link between obesity and clonal hematopoiesis of indeterminate potential (CHIP) associated clonal hematopoiesis. It aims to enhance our comprehension of this multifaceted association, offering insights into potential avenues for future research and therapeutic interventions.
{"title":"The impact of obesity-induced inflammation on clonal hematopoiesis.","authors":"Santhosh Kumar Pasupuleti, Reuben Kapur","doi":"10.1097/moh.0000000000000819","DOIUrl":"https://doi.org/10.1097/moh.0000000000000819","url":null,"abstract":"This review meticulously delves into existing literature and recent findings to elucidate the intricate link between obesity and clonal hematopoiesis of indeterminate potential (CHIP) associated clonal hematopoiesis. It aims to enhance our comprehension of this multifaceted association, offering insights into potential avenues for future research and therapeutic interventions.","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"222 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1097/moh.0000000000000818
Takako Yokomizo, Motohiko Oshima, Atsushi Iwama
The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies.
{"title":"Epigenetics of hematopoietic stem cell aging.","authors":"Takako Yokomizo, Motohiko Oshima, Atsushi Iwama","doi":"10.1097/moh.0000000000000818","DOIUrl":"https://doi.org/10.1097/moh.0000000000000818","url":null,"abstract":"The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies.","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"3 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1097/moh.0000000000000817
James Ropa, Wouter Van't Hof
Here, we review classic and emerging uses of umbilical cord blood and highlight strategies to improve its utility, focusing on selection of the appropriate units and cell types for the intended applications.
{"title":"The fulfilled promise and unmet potential of umbilical cord blood.","authors":"James Ropa, Wouter Van't Hof","doi":"10.1097/moh.0000000000000817","DOIUrl":"https://doi.org/10.1097/moh.0000000000000817","url":null,"abstract":"Here, we review classic and emerging uses of umbilical cord blood and highlight strategies to improve its utility, focusing on selection of the appropriate units and cell types for the intended applications.","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"58 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1097/moh.0000000000000816
Vikram R Paralkar
Ribosomal RNAs (rRNAs) are transcribed within nucleoli from rDNA repeats by RNA Polymerase I (Pol I). There is variation in rRNA transcription rates across the hematopoietic tree, and leukemic blast cells have prominent nucleoli, indicating abundant ribosome biogenesis. The mechanisms underlying these variations are poorly understood. The purpose of this review is to summarize findings of rDNA binding and Pol I regulation by hematopoietic transcription factors.
核糖体 RNA(rRNA)在核小体内由 RNA 聚合酶 I(Pol I)从 rDNA 重复序列转录而来。在整个造血树中,rRNA 的转录率存在差异,而白血病爆炸细胞具有突出的核小体,这表明核糖体的生物生成非常丰富。人们对这些变化的机制知之甚少。本综述旨在总结造血转录因子对 rDNA 结合和 Pol I 调控的研究结果。
{"title":"Transcription factor regulation of ribosomal RNA in hematopoiesis.","authors":"Vikram R Paralkar","doi":"10.1097/moh.0000000000000816","DOIUrl":"https://doi.org/10.1097/moh.0000000000000816","url":null,"abstract":"Ribosomal RNAs (rRNAs) are transcribed within nucleoli from rDNA repeats by RNA Polymerase I (Pol I). There is variation in rRNA transcription rates across the hematopoietic tree, and leukemic blast cells have prominent nucleoli, indicating abundant ribosome biogenesis. The mechanisms underlying these variations are poorly understood. The purpose of this review is to summarize findings of rDNA binding and Pol I regulation by hematopoietic transcription factors.","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"47 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-12-07DOI: 10.1097/MOH.0000000000000797
Ann-Kathrin Eisfeld
Purpose of review: This review aims to summarize different contributors to survival disparities in acute myeloid leukemia (AML) patients. The focus is set on African-American (hereafter referred to as Black) patients, with separate consideration of self-reported race and ancestry. It aims to also highlight the interconnectivity of the different features that impact on despair survival.
Recent findings: The main themes in the literature covered in this article include the impact of social deprivation, clinical trial enrollment and biobanking, structural racism and ancestry-associated differences in genetic features on survival outcomes.
Summary: An increasing number of studies have not only shown persistent survival disparities between Black and non-Hispanic White AML patients, but uncovered a multitude of contributors that have additive adverse effects on patient outcomes. In addition to potentially modifiable features, such as socioeconomic factors and trial enrollment odds that require urgent interventions, there is emerging data on differences in disease biology with respect to genetic ancestry, including frequencies of known AML-driver mutations and their associated prognostic impact.
{"title":"Disparities in acute myeloid leukemia treatments and outcomes.","authors":"Ann-Kathrin Eisfeld","doi":"10.1097/MOH.0000000000000797","DOIUrl":"10.1097/MOH.0000000000000797","url":null,"abstract":"<p><strong>Purpose of review: </strong>This review aims to summarize different contributors to survival disparities in acute myeloid leukemia (AML) patients. The focus is set on African-American (hereafter referred to as Black) patients, with separate consideration of self-reported race and ancestry. It aims to also highlight the interconnectivity of the different features that impact on despair survival.</p><p><strong>Recent findings: </strong>The main themes in the literature covered in this article include the impact of social deprivation, clinical trial enrollment and biobanking, structural racism and ancestry-associated differences in genetic features on survival outcomes.</p><p><strong>Summary: </strong>An increasing number of studies have not only shown persistent survival disparities between Black and non-Hispanic White AML patients, but uncovered a multitude of contributors that have additive adverse effects on patient outcomes. In addition to potentially modifiable features, such as socioeconomic factors and trial enrollment odds that require urgent interventions, there is emerging data on differences in disease biology with respect to genetic ancestry, including frequencies of known AML-driver mutations and their associated prognostic impact.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"58-63"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}