首页 > 最新文献

Current Opinion in Hematology最新文献

英文 中文
Pas de deux: the coordinated coupling of erythroid differentiation with the cell cycle. 双人舞:红细胞分化与细胞周期的协调耦合。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-16 DOI: 10.1097/MOH.0000000000000811
Merav Socolovsky

Purpose of review: Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number.

Recent findings: Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response.

Summary: There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.

综述的目的:最新研究发现,细胞周期的持续时间和结构与红细胞分化的不同阶段同步重塑。除了增加细胞数量的一般功能外,这些细胞周期特征在分化过程中还具有调节作用:在红细胞祖细胞的早期阶段(称为红细胞集落形成期,或 "CFU-e"),细胞周期的 G1 阶段逐渐缩短。这一过程的顶点是红细胞终末分化(ETD)的关键转录转换,它与 S 期进展同步并依赖于 S 期进展。此外,CFU-e/ETD 转换发生在异常短的 S 期,这是异常短的细胞周期的一部分,其特点是复制叉速度极快。总结:细胞周期结构和持续时间、S 期和复制叉速度以及红细胞分化阶段之间存在密切的相互依存关系。此外,细胞周期结构和速度周期的调节会影响红细胞分化过程中的发育进程和细胞命运决定。这些途径可能提供新的机理认识和潜在的治疗靶点。
{"title":"Pas de deux: the coordinated coupling of erythroid differentiation with the cell cycle.","authors":"Merav Socolovsky","doi":"10.1097/MOH.0000000000000811","DOIUrl":"10.1097/MOH.0000000000000811","url":null,"abstract":"<p><strong>Purpose of review: </strong>Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number.</p><p><strong>Recent findings: </strong>Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response.</p><p><strong>Summary: </strong>There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"96-103"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrocytic anemias. 巨红细胞性贫血
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-07 DOI: 10.1097/MOH.0000000000000804
Mark J Koury, Daniel J Hausrath

Purpose of review: Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments.

Recent findings: Both inherited and acquired bone marrow diseases involving primarily impaired or delayed erythroid cell division or secondary adaptions to basic erythroid cellular deficits that results in prolonged cell division frequently present with macrocytic anemia.

Summary of findings: In marrow failure diseases, large accumulations of iron and heme in early stages of erythroid differentiation make cells in those stages especially susceptible to death, but the erythroid cells that can survive the early stages of terminal differentiation yield fewer but larger erythrocytes that are recognized clinically as macrocytic anemia. Other disorders that limit deoxynucleosides required for DNA synthesis affect a broader range of erythropoietic cells, but they also lead to macrocytic anemia. The source of macrocytosis in other diseases remains uncertain.

回顾的目的:上个世纪以来,与巨幼红细胞性贫血相关的疾病在不断变化,目前有越来越多的患者患有血液病,包括恶性肿瘤和骨髓增生异常综合征。巨幼红细胞性贫血发生的细胞内机制有助于理解正常的红细胞生成。红细胞祖细胞和前体细胞对这些疾病的适应会导致红细胞数量减少但体积增大,了解这些机制可为可能的治疗提供信息:遗传性和获得性骨髓疾病主要涉及红细胞分裂受损或延迟,或对基本红细胞细胞缺陷的继发性适应,从而导致细胞分裂延长:在骨髓衰竭疾病中,红细胞分化早期阶段铁和血红素的大量积聚使处于这些阶段的细胞特别容易死亡,但能在终末分化早期阶段存活下来的红细胞产生的红细胞数量较少但体积较大,临床上被认定为巨幼红细胞性贫血。其他限制 DNA 合成所需的脱氧核苷的疾病会影响更多的红细胞,但也会导致巨红细胞性贫血。其他疾病中巨幼红细胞症的来源仍不确定。
{"title":"Macrocytic anemias.","authors":"Mark J Koury, Daniel J Hausrath","doi":"10.1097/MOH.0000000000000804","DOIUrl":"10.1097/MOH.0000000000000804","url":null,"abstract":"<p><strong>Purpose of review: </strong>Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments.</p><p><strong>Recent findings: </strong>Both inherited and acquired bone marrow diseases involving primarily impaired or delayed erythroid cell division or secondary adaptions to basic erythroid cellular deficits that results in prolonged cell division frequently present with macrocytic anemia.</p><p><strong>Summary of findings: </strong>In marrow failure diseases, large accumulations of iron and heme in early stages of erythroid differentiation make cells in those stages especially susceptible to death, but the erythroid cells that can survive the early stages of terminal differentiation yield fewer but larger erythrocytes that are recognized clinically as macrocytic anemia. Other disorders that limit deoxynucleosides required for DNA synthesis affect a broader range of erythropoietic cells, but they also lead to macrocytic anemia. The source of macrocytosis in other diseases remains uncertain.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"82-88"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
microRNAs and thrombo-inflammation: relationship in sight. microRNAs与血栓-炎症:关系就在眼前。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-01-24 DOI: 10.1097/MOH.0000000000000803
Sonia Águila, Rocío González-Conejero, Constantino Martínez

Purpose of review: Thrombo-inflammation is a multifaceted pathologic process involving various cells such as platelets, neutrophils, and monocytes. In recent years, microRNAs have been consistently implicated as regulators of these cells.

Recent findings: MicroRNAs play a regulatory role in several platelet receptors that have recently been identified as contributing to thrombo-inflammation and neutrophil extracellular trap (NET) formation. In addition, a growing body of evidence has shown that several intracellular and extracellular microRNAs directly promote NET formation.

Summary: Targeting microRNAs is a promising therapeutic approach to control thrombosis in patients with both infectious and noninfectious inflammatory diseases. Future research efforts should focus on elucidating the specific roles of microRNAs in thrombo-inflammation and translating these findings into tangible benefits for patients.

综述的目的:血栓炎症是一个涉及血小板、中性粒细胞和单核细胞等多种细胞的多方面病理过程。近年来,microRNAs 不断被认为是这些细胞的调控因子:最近的研究发现:微小 RNA 在几种血小板受体中发挥着调节作用,这些受体最近被确定为导致血栓-炎症和中性粒细胞胞外陷阱(NET)形成的因素。此外,越来越多的证据表明,几种细胞内和细胞外 microRNA 直接促进了 NET 的形成。小结:靶向 microRNA 是控制感染性和非感染性炎症性疾病患者血栓形成的一种很有前景的治疗方法。未来的研究工作应侧重于阐明微RNA在血栓-炎症中的特定作用,并将这些发现转化为患者的实际获益。
{"title":"microRNAs and thrombo-inflammation: relationship in sight.","authors":"Sonia Águila, Rocío González-Conejero, Constantino Martínez","doi":"10.1097/MOH.0000000000000803","DOIUrl":"10.1097/MOH.0000000000000803","url":null,"abstract":"<p><strong>Purpose of review: </strong>Thrombo-inflammation is a multifaceted pathologic process involving various cells such as platelets, neutrophils, and monocytes. In recent years, microRNAs have been consistently implicated as regulators of these cells.</p><p><strong>Recent findings: </strong>MicroRNAs play a regulatory role in several platelet receptors that have recently been identified as contributing to thrombo-inflammation and neutrophil extracellular trap (NET) formation. In addition, a growing body of evidence has shown that several intracellular and extracellular microRNAs directly promote NET formation.</p><p><strong>Summary: </strong>Targeting microRNAs is a promising therapeutic approach to control thrombosis in patients with both infectious and noninfectious inflammatory diseases. Future research efforts should focus on elucidating the specific roles of microRNAs in thrombo-inflammation and translating these findings into tangible benefits for patients.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"140-147"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascular microphysiological systems. 血管微生理系统
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-01-18 DOI: 10.1097/MOH.0000000000000802
Sarah E Shelton

Purpose of review: This review summarizes innovations in vascular microphysiological systems (MPS) and discusses the themes that have emerged from recent works.

Recent findings: Vascular MPS are increasing in complexity and ability to replicate tissue. Many labs use vascular MPS to study transport phenomena such as analyzing endothelial barrier function. Beyond vascular permeability, these models are also being used for pharmacological studies, including drug distribution and toxicity modeling. In part, these studies are made possible due to exciting advances in organ-specific models. Inflammatory processes have also been modeled by incorporating immune cells, with the ability to explore both cell migration and function. Finally, as methods for generating vascular MPS flourish, many researchers have turned their attention to incorporating flow to more closely recapitulate in vivo conditions.

Summary: These models represent many different types of tissue and disease states. Some devices have relatively simple geometry and few cell types, while others use complex, multicompartmental microfluidics and integrate several cell types and origins. These 3D models enable us to observe model evolution in real time and perform a plethora of functional assays not possible using traditional cell culture methods.

综述的目的:这篇综述总结了血管微观生理学系统(MPS)的创新,并讨论了近期工作中出现的主题:血管微物理系统的复杂性和复制组织的能力都在不断提高。许多实验室利用血管微观物理系统研究运输现象,如分析内皮屏障功能。除了血管通透性,这些模型还被用于药理学研究,包括药物分布和毒性建模。这些研究之所以成为可能,部分原因是器官特异性模型取得了令人振奋的进展。炎症过程也可通过加入免疫细胞进行建模,从而探索细胞迁移和功能。最后,随着生成血管 MPS 的方法蓬勃发展,许多研究人员已将注意力转向结合流动,以更接近地再现体内情况。一些装置的几何结构相对简单,细胞类型较少,而另一些装置则使用复杂的多室微流体技术,并整合了多种细胞类型和来源。这些三维模型使我们能够实时观察模型的演变,并进行大量传统细胞培养方法无法实现的功能测试。
{"title":"Vascular microphysiological systems.","authors":"Sarah E Shelton","doi":"10.1097/MOH.0000000000000802","DOIUrl":"10.1097/MOH.0000000000000802","url":null,"abstract":"<p><strong>Purpose of review: </strong>This review summarizes innovations in vascular microphysiological systems (MPS) and discusses the themes that have emerged from recent works.</p><p><strong>Recent findings: </strong>Vascular MPS are increasing in complexity and ability to replicate tissue. Many labs use vascular MPS to study transport phenomena such as analyzing endothelial barrier function. Beyond vascular permeability, these models are also being used for pharmacological studies, including drug distribution and toxicity modeling. In part, these studies are made possible due to exciting advances in organ-specific models. Inflammatory processes have also been modeled by incorporating immune cells, with the ability to explore both cell migration and function. Finally, as methods for generating vascular MPS flourish, many researchers have turned their attention to incorporating flow to more closely recapitulate in vivo conditions.</p><p><strong>Summary: </strong>These models represent many different types of tissue and disease states. Some devices have relatively simple geometry and few cell types, while others use complex, multicompartmental microfluidics and integrate several cell types and origins. These 3D models enable us to observe model evolution in real time and perform a plethora of functional assays not possible using traditional cell culture methods.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"155-161"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating endothelial cells in pathophysiology. 病理生理学中的循环内皮细胞
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-15 DOI: 10.1097/MOH.0000000000000814
Victor Emmanuel Brett, Francoise Dignat George, Chloe James

Purpose of review: The purpose of this review is to synthesize recent insights into the roles and importance of circulating endothelial cells (CECs) as indicators of the severity, progression, and prognosis of vascular-related diseases.

Recent findings: Recent studies have identified elevated counts of CECs in pathological conditions, notably inflammatory or cardiovascular diseases such as acute myocardial infarction and heart failure, underscoring their potential as sensitive indicators of disease. Furthermore, the rise in CEC levels in cancer patients, particularly with disease advancement, points to their role in cancer-associated angiogenesis and response to treatment.

Summary: This review underscores the evolving significance of CECs as markers for evaluating the gravity and advancement of diseases with vascular injury, including cardiovascular diseases, cancer, inflammatory conditions, and thromboembolic events. These last years, efforts made to standardize flow cytometry detection of CEC and the development of highly sensitive techniques to isolate, quantify or phenotype rare cells open promising avenues for clinical application. This may yield extensive knowledge regarding the mechanisms by which endothelial cells contribute to a variety of vascular-related disorders and their clinical value as emerging biomarkers.

综述的目的:本综述旨在总结循环内皮细胞(CECs)作为血管相关疾病的严重程度、进展和预后指标的作用和重要性的最新研究成果:最近的研究发现,在病理情况下,特别是在急性心肌梗塞和心力衰竭等炎症或心血管疾病中,CECs 的数量会升高,这凸显了它们作为疾病敏感指标的潜力。此外,癌症患者体内 CEC 含量的升高(尤其是随着病情的发展)也表明了它们在癌症相关血管生成和治疗反应中的作用。最近几年,人们努力实现流式细胞仪检测 CEC 的标准化,并开发了高灵敏度技术来分离、量化稀有细胞或对其进行表型,这为临床应用开辟了广阔的前景。这将使人们广泛了解内皮细胞导致各种血管相关疾病的机制,以及它们作为新兴生物标记物的临床价值。
{"title":"Circulating endothelial cells in pathophysiology.","authors":"Victor Emmanuel Brett, Francoise Dignat George, Chloe James","doi":"10.1097/MOH.0000000000000814","DOIUrl":"10.1097/MOH.0000000000000814","url":null,"abstract":"<p><strong>Purpose of review: </strong>The purpose of this review is to synthesize recent insights into the roles and importance of circulating endothelial cells (CECs) as indicators of the severity, progression, and prognosis of vascular-related diseases.</p><p><strong>Recent findings: </strong>Recent studies have identified elevated counts of CECs in pathological conditions, notably inflammatory or cardiovascular diseases such as acute myocardial infarction and heart failure, underscoring their potential as sensitive indicators of disease. Furthermore, the rise in CEC levels in cancer patients, particularly with disease advancement, points to their role in cancer-associated angiogenesis and response to treatment.</p><p><strong>Summary: </strong>This review underscores the evolving significance of CECs as markers for evaluating the gravity and advancement of diseases with vascular injury, including cardiovascular diseases, cancer, inflammatory conditions, and thromboembolic events. These last years, efforts made to standardize flow cytometry detection of CEC and the development of highly sensitive techniques to isolate, quantify or phenotype rare cells open promising avenues for clinical application. This may yield extensive knowledge regarding the mechanisms by which endothelial cells contribute to a variety of vascular-related disorders and their clinical value as emerging biomarkers.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"148-154"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Venous thromboembolism: diagnostic advances and unaddressed challenges in management. 静脉血栓栓塞症:诊断方面的进步和管理方面尚未解决的难题。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-12 DOI: 10.1097/MOH.0000000000000809
Rick Mathews, Monica T Hinds, Khanh P Nguyen

Purpose of review: This review summarizes recent advances in developing targeted diagnostics for venous thromboembolism (VTE) and unaddressed knowledge gaps in patient management. Without addressing these critical data needs, the morbidity in VTE patients will persist.

Recent findings: Recent studies investigating plasma protein profiles in VTE patients have identified key diagnostic targets to address the currently unmet need for low-cost, confirmatory, point-of-care VTE diagnostics. These studies and a growing body of evidence from animal model studies have revealed the importance of inflammatory and vascular pathology in driving VTE, which are currently unaddressed targets for VTE therapy. To enhance the translation of preclinical animal studies, clinical quantification of thrombus burden and comparative component analyses between modeled VTE and clinical VTE are necessary.

Summary: Lead candidates from protein profiling of VTE patients' plasma offer a promising outlook in developing low cost, confirmatory, point-of-care testing for VTE. Additionally, addressing the critical knowledge gap of quantitatively measuring clinical thrombi will allow for an array of benefits in VTE management and informing the translatability of experimental therapeutics.

综述的目的:本综述总结了在开发静脉血栓栓塞症(VTE)靶向诊断方面的最新进展,以及在患者管理方面尚未解决的知识缺口。如果不解决这些关键的数据需求,VTE 患者的发病率将持续存在:最近对 VTE 患者血浆蛋白图谱的研究确定了关键的诊断目标,以满足目前尚未满足的对低成本、确诊性、护理点 VTE 诊断的需求。这些研究和越来越多的动物模型研究证据揭示了炎症和血管病理学在驱动 VTE 方面的重要性,而这正是目前尚未解决的 VTE 治疗目标。为加强临床前动物研究的转化,有必要对血栓负担进行临床量化,并对模型 VTE 和临床 VTE 进行成分比较分析。此外,解决定量测量临床血栓的关键知识缺口将为 VTE 管理带来一系列益处,并为实验性疗法的可转化性提供信息。
{"title":"Venous thromboembolism: diagnostic advances and unaddressed challenges in management.","authors":"Rick Mathews, Monica T Hinds, Khanh P Nguyen","doi":"10.1097/MOH.0000000000000809","DOIUrl":"10.1097/MOH.0000000000000809","url":null,"abstract":"<p><strong>Purpose of review: </strong>This review summarizes recent advances in developing targeted diagnostics for venous thromboembolism (VTE) and unaddressed knowledge gaps in patient management. Without addressing these critical data needs, the morbidity in VTE patients will persist.</p><p><strong>Recent findings: </strong>Recent studies investigating plasma protein profiles in VTE patients have identified key diagnostic targets to address the currently unmet need for low-cost, confirmatory, point-of-care VTE diagnostics. These studies and a growing body of evidence from animal model studies have revealed the importance of inflammatory and vascular pathology in driving VTE, which are currently unaddressed targets for VTE therapy. To enhance the translation of preclinical animal studies, clinical quantification of thrombus burden and comparative component analyses between modeled VTE and clinical VTE are necessary.</p><p><strong>Summary: </strong>Lead candidates from protein profiling of VTE patients' plasma offer a promising outlook in developing low cost, confirmatory, point-of-care testing for VTE. Additionally, addressing the critical knowledge gap of quantitatively measuring clinical thrombi will allow for an array of benefits in VTE management and informing the translatability of experimental therapeutics.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"122-129"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signaling networks guiding erythropoiesis. 引导红细胞生成的信号网络。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-07 DOI: 10.1097/MOH.0000000000000808
Shilpa Kuttikrishnan, Kirti S Prabhu, Abdul Q Khan, Shahab Uddin

Purpose of review: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis.

Recent findings: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation.

Summary: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.

综述目的:细胞因子介导的信号通路(包括 JAK/STAT、PI3K/AKT 和 Ras/MAPK 通路)在红细胞生成过程中发挥着重要作用。这些通路参与了红细胞的存活、增殖和分化功能:JAK/STAT 通路控制着红细胞祖细胞的分化、增殖和存活。PI3K/AKT 信号级联促进红细胞祖细胞的存活、增殖和最终分化。在红细胞成熟过程中,由 EPO 触发的 MAPK 会抑制髓系基因,而 PI3K 则对分化至关重要。促炎细胞因子激活的信号通路可改变红细胞生成,如 EPOR 触发的信号通路,包括存活、分化和增殖。要全面了解这些信号通路在红细胞生成过程中的机制和相互作用,还需要进一步的研究。
{"title":"Signaling networks guiding erythropoiesis.","authors":"Shilpa Kuttikrishnan, Kirti S Prabhu, Abdul Q Khan, Shahab Uddin","doi":"10.1097/MOH.0000000000000808","DOIUrl":"10.1097/MOH.0000000000000808","url":null,"abstract":"<p><strong>Purpose of review: </strong>Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis.</p><p><strong>Recent findings: </strong>The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation.</p><p><strong>Summary: </strong>A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"89-95"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental regulation of primitive erythropoiesis. 原始红细胞生成的发育调节。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-27 DOI: 10.1097/MOH.0000000000000806
Marlies P Rossmann, James Palis

Purpose of review: In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation.

Recent findings: Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery.

Summary: The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.

综述的目的:在这篇综述中,我们概述了最近对原始红细胞生成的研究,重点是在破译其胚胎起源、确定其发育调控的物种特异性差异以及更好地理解参与终端分化的分子和代谢途径方面取得的进展:单细胞转录组学结合最先进的小鼠胚胎世系追踪方法,对源自中胚层祖细胞的第一批(原始)红细胞的起源有了新的认识。此外,在罕见的人类早期胚胎样本中对原始红细胞生成进行的研究显示,哺乳动物的原始红细胞发生过程总体上是一致的,尽管存在一些有趣的差异,例如红细胞生成素(EPO)在早期胚胎中的生成位置。从机理上讲,对原始红细胞生成起关键调控作用的转录因子的范围已经扩大,包括转录延伸的调控因子以及组蛋白甲基转移酶 DOT1L 等表观遗传修饰因子。对于后者,除了酶活性外,非规范作用也正在被发现。最后,对原始红细胞前体的代谢和蛋白质组情况的详细调查显示,磷酸戊糖途径等关键代谢途径的激活与 mRNA 翻译机制的显著丧失并行不悖。比较原始红细胞生成和最终红细胞生成的调控,以及不同调控层次(转录、表观遗传和代谢)之间的相互作用,对于实现在体外真实生成红细胞用于治疗的目标至关重要。
{"title":"Developmental regulation of primitive erythropoiesis.","authors":"Marlies P Rossmann, James Palis","doi":"10.1097/MOH.0000000000000806","DOIUrl":"10.1097/MOH.0000000000000806","url":null,"abstract":"<p><strong>Purpose of review: </strong>In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation.</p><p><strong>Recent findings: </strong>Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery.</p><p><strong>Summary: </strong>The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"71-81"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A role of platelet C-type lectin-like receptor-2 and its ligand podoplanin in vascular biology. 血小板 C 型凝集素样受体-2 及其配体 podoplanin 在血管生物学中的作用。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-06 DOI: 10.1097/MOH.0000000000000805
Katsue Suzuki-Inoue, Nagaharu Tsukiji

Purpose of review: Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation.

Findings: CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes.

Summary: The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.

综述的目的:血小板对止血至关重要,对淋巴和肺的发育以及血管完整性的维护也至关重要。淋巴管内皮细胞(LECs)和其他细胞中的血小板活化受体 C 型凝集素样受体 2(CLEC-2)及其内源性配体 podoplanin(PDPN)调节着这些过程。本综述旨在全面总结血小板 CLEC-2 和 PDPN 的作用。本综述还重点讨论了血小板 CLEC-2 和 PDPN 介导血液/淋巴分离的基本机制:研究结果:在原发性淋巴囊、发育淋巴管连接处、新生儿肠系膜和肿瘤淋巴管生成部位,CLEC-2/PDPN 诱导的血小板活化可防止血液/淋巴管错接。此外,CLEC-2/PDPN 诱导的血小板活化对肺的发育至关重要。缺乏 CLEC-2 或 PDPN 的小鼠会出现充血淋巴管、肺畸形和脑血管异常。在稳态成年小鼠中缺失 CLEC-2 不会导致血液/淋巴管混合。在成年期,CLEC-2 可维持血管的完整性和淋巴结中高内皮静脉的完整性。小结:血小板 CLEC-2/LEC PDPN 相互作用可防止血液/淋巴系统活跃重塑部位的血液/淋巴管混合,但在稳态成年小鼠中则不会。当血管通透性在出生前后增加时,这种相互作用还能调节血管的完整性。
{"title":"A role of platelet C-type lectin-like receptor-2 and its ligand podoplanin in vascular biology.","authors":"Katsue Suzuki-Inoue, Nagaharu Tsukiji","doi":"10.1097/MOH.0000000000000805","DOIUrl":"10.1097/MOH.0000000000000805","url":null,"abstract":"<p><strong>Purpose of review: </strong>Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation.</p><p><strong>Findings: </strong>CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes.</p><p><strong>Summary: </strong>The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"130-139"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of red blood cells from induced pluripotent stem cells. 用诱导多能干细胞生成红细胞。
IF 3.2 3区 医学 Q2 HEMATOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-13 DOI: 10.1097/MOH.0000000000000810
Naomi Gunawardena, Stella T Chou

Purpose of review: Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use.

Recent findings: For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes.

Summary: Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.

综述目的:人类诱导多能干细胞(iPSCs)是一种具有吸引力的来源,可生成体外衍生血液,用作可输血和试剂红细胞。我们回顾了这一领域的最新进展以及在临床应用中仍然存在的局限性:对于 iPSC 衍生红细胞(RBC)的生成,最近的工作已经优化了培养条件,以省略饲养细胞,提高红细胞成熟度,并生成模拟胎儿或成人型红细胞的细胞。基因组编辑为提高细胞产量和创造具有定制抗原表型的设计型红细胞提供了新策略。摘要:目前的方案支持模拟胚胎和胎儿造血的红细胞生产,细胞产量足以用于诊断红细胞试剂。目前在生产输血用红细胞方面面临的挑战包括重现确定性红细胞生成以生产功能性成人型细胞、提高培养条件的可扩展性以及优化高密度生产能力。
{"title":"Generation of red blood cells from induced pluripotent stem cells.","authors":"Naomi Gunawardena, Stella T Chou","doi":"10.1097/MOH.0000000000000810","DOIUrl":"10.1097/MOH.0000000000000810","url":null,"abstract":"<p><strong>Purpose of review: </strong>Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use.</p><p><strong>Recent findings: </strong>For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes.</p><p><strong>Summary: </strong>Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":" ","pages":"115-121"},"PeriodicalIF":3.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Hematology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1