Pub Date : 2022-10-20DOI: 10.5552/crojfe.2023.1700
Ł. Warguła, P. Lijewski, M. Kukla
Operating conditions often fluctuate during processing of branches and sawmill offcuts using low-power wood size reduction machines (WSRMs), mainly due to changes in wood supply frequency. This results in relatively high proportions of idling time. Fuel consumption and associated exhaust emissions of WSRMs with combustion engines can be reduced by using innovative drive unit control systems during idling. The objective of the research was to determine the effects of two speed control systems on the fuel consumption and exhaust emissions of a WSRM with a two-cylinder cutting mechanisms driven by a small 9.5 kW spark ignition engine. Speed control system A (commercially available) had a substantially higher rotational speed than system B (an innovative, adaptive solution subject to patent application No. P433586). Pine (Pinus sylvestris L.) wood sawmill offcuts (average cross-sectional area, length and water content: 25×40 mm, 3000 mm and ca. 12, respectively) were used in system tests at a feed rate of ca. 5 pieces min-1. Material of this size is typically processed by such machines. Operating conditions were monitored by recording the rotational speed and torque. Emissions of harmful exhaust compounds–carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), and nitrogen oxides (NOx) – were recorded using a portable emission measurement system. Fuel consumption values were also calculated from the data. The following effects were observed: application of innovative system B resulted in 33% lower fuel consumption, as well as 30%, 37% and 33% lower CO, CO2 and NOx emissions, respectively, than system A, but at the same time 290% higher HC emissions were registered. In operating conditions with higher proportions of idling time, solution B provides even higher reductions in fuel consumption and exhaust emissions.
{"title":"Effects of Changing Drive Control Method of Idling Wood Size Reduction Machines on Fuel Consumption and Exhaust Emissions","authors":"Ł. Warguła, P. Lijewski, M. Kukla","doi":"10.5552/crojfe.2023.1700","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1700","url":null,"abstract":"Operating conditions often fluctuate during processing of branches and sawmill offcuts using low-power wood size reduction machines (WSRMs), mainly due to changes in wood supply frequency. This results in relatively high proportions of idling time. Fuel consumption and associated exhaust emissions of WSRMs with combustion engines can be reduced by using innovative drive unit control systems during idling. The objective of the research was to determine the effects of two speed control systems on the fuel consumption and exhaust emissions of a WSRM with a two-cylinder cutting mechanisms driven by a small 9.5 kW spark ignition engine. Speed control system A (commercially available) had a substantially higher rotational speed than system B (an innovative, adaptive solution subject to patent application No. P433586). Pine (Pinus sylvestris L.) wood sawmill offcuts (average cross-sectional area, length and water content: 25×40 mm, 3000 mm and ca. 12, respectively) were used in system tests at a feed rate of ca. 5 pieces min-1. Material of this size is typically processed by such machines. Operating conditions were monitored by recording the rotational speed and torque. Emissions of harmful exhaust compounds–carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), and nitrogen oxides (NOx) – were recorded using a portable emission measurement system. Fuel consumption values were also calculated from the data. The following effects were observed: application of innovative system B resulted in 33% lower fuel consumption, as well as 30%, 37% and 33% lower CO, CO2 and NOx emissions, respectively, than system A, but at the same time 290% higher HC emissions were registered. In operating conditions with higher proportions of idling time, solution B provides even higher reductions in fuel consumption and exhaust emissions.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44811520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.1724
S. Suhartana, Yuniawati
Skidding in peat swamp plantation forest requires high skill and alertness, particularly in relation to peat damage, which includes subsidence as such a damage. The objective of this research is to analyze the effect of skidding operator’s skill on productivity, skidding cost and subsidence in peat swamp plantation forest. The method of this research comprised the skidding operation conducted by two different skidding operators with different working experience, followed by measuring the average productivity and skidding cost, measuring the elevation of water table at various points in the peat soil, in the location of logging compartment for 3 years, namely from 2018–2020 (measured every month), and measuring the effect of working skill of the two skidding operators on productivity and cost of skidding and the occurring subsidence rate. Research results show that the average skidding productivity of operator A was higher than that of operator B due to longer working experience of operator A, which was more than 5 years. This high average productivity caused low production cost, namely IDR 28,022 m-3 or EUR 1.653 m-3. Wood volume, skidding distance and operators’ skidding skill affect the average skidding cycle time and cycle time affects the average skidding productivity. Subsidence in 2018 was higher than that in 2019 and 2020, namely 2.8 cm year-1. Wood skidding performed by skidding operators with higher skill can increase skidding productivity and suppress skidding cost.
{"title":"Skill of Skidding Equipment Operator in Relation to Productivity, Skidding Cost and Subsidence in Peat Swamp Forest Plantation","authors":"S. Suhartana, Yuniawati","doi":"10.5552/crojfe.2023.1724","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1724","url":null,"abstract":"Skidding in peat swamp plantation forest requires high skill and alertness, particularly in relation to peat damage, which includes subsidence as such a damage. The objective of this research is to analyze the effect of skidding operator’s skill on productivity, skidding cost and subsidence in peat swamp plantation forest. The method of this research comprised the skidding operation conducted by two different skidding operators with different working experience, followed by measuring the average productivity and skidding cost, measuring the elevation of water table at various points in the peat soil, in the location of logging compartment for 3 years, namely from 2018–2020 (measured every month), and measuring the effect of working skill of the two skidding operators on productivity and cost of skidding and the occurring subsidence rate. Research results show that the average skidding productivity of operator A was higher than that of operator B due to longer working experience of operator A, which was more than 5 years. This high average productivity caused low production cost, namely IDR 28,022 m-3 or EUR 1.653 m-3. Wood volume, skidding distance and operators’ skidding skill affect the average skidding cycle time and cycle time affects the average skidding productivity. Subsidence in 2018 was higher than that in 2019 and 2020, namely 2.8 cm year-1. Wood skidding performed by skidding operators with higher skill can increase skidding productivity and suppress skidding cost.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44351571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.1656
D. Kulak, G. Szewczyk, A. Stańczykiewicz
Farm tractors are very popular in Poland and other European countries. When coupled with trailers equipped with a crane with a grapple, they are also used, especially in easily accessible, flat terrain, for timber forwarding in the CTL (Cut-to-Length) method. A comparative analysis of working time and productivity was performed on two forwarding units, consisting of a farm tractor Ursus and a Farma trailer with the load capacity of 6 tons, as well as a farm tractor Valtra Valmet and a Palms trailer with the capacity of 9 tons, which forwarded wood in a mature pine stand. An analysis was done for 64 work cycles with an average load volume of 2.1 m3 for the former unit, and 36 cycles with an average load volume of 7.9 m3 for the latter. The working time structure of both units was similar. During work, tractor operators spent most time, i.e. over 35%, loading the timber, then travelling with the load and unloading. The lowest share in the work cycle, around 5%, belonged to travelling without a load and forwarding. The average forwarding time for the Farma unit amounted to 33 minutes and was about twice shorter than that for the Palms unit, amounting to 64 minutes. The distance covered during loaded travel was the only factor that had a significant influence on the duration of forwarding cycles. The coefficients of correlation between these variables were 0.56–0.76. The net productivity obtained in the operating time of the Palms unit was 7.5 m3×PMH-1 and was almost twice as high as that of the Farma unit, i.e. 3.8 m3×PMH-1. For both units multiple regression models were developed, in which forwarding cycles productivity is calculated based on the volume of the transported load and the distance of loaded travel.
{"title":"Productivity and Working Time Structure of Timber Forwarding in Flatland Thinned Pine Stand with the Use of Farm Tractors","authors":"D. Kulak, G. Szewczyk, A. Stańczykiewicz","doi":"10.5552/crojfe.2023.1656","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1656","url":null,"abstract":"Farm tractors are very popular in Poland and other European countries. When coupled with trailers equipped with a crane with a grapple, they are also used, especially in easily accessible, flat terrain, for timber forwarding in the CTL (Cut-to-Length) method. A comparative analysis of working time and productivity was performed on two forwarding units, consisting of a farm tractor Ursus and a Farma trailer with the load capacity of 6 tons, as well as a farm tractor Valtra Valmet and a Palms trailer with the capacity of 9 tons, which forwarded wood in a mature pine stand. An analysis was done for 64 work cycles with an average load volume of 2.1 m3 for the former unit, and 36 cycles with an average load volume of 7.9 m3 for the latter. The working time structure of both units was similar. During work, tractor operators spent most time, i.e. over 35%, loading the timber, then travelling with the load and unloading. The lowest share in the work cycle, around 5%, belonged to travelling without a load and forwarding. The average forwarding time for the Farma unit amounted to 33 minutes and was about twice shorter than that for the Palms unit, amounting to 64 minutes. The distance covered during loaded travel was the only factor that had a significant influence on the duration of forwarding cycles. The coefficients of correlation between these variables were 0.56–0.76. The net productivity obtained in the operating time of the Palms unit was 7.5 m3×PMH-1 and was almost twice as high as that of the Farma unit, i.e. 3.8 m3×PMH-1. For both units multiple regression models were developed, in which forwarding cycles productivity is calculated based on the volume of the transported load and the distance of loaded travel.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47574911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.2073
M. Landekić, M. Šporčić, M. Bačić, Z. Pandur, Matija Bakarić
Motor-manual felling and wood processing is a high-risk work process where the chainsaw, in connection to other variables in the working environment, is a key and constant source of risk and danger for forest chainsaw operators. Pursuant to the foregoing, the purpose of this research is to investigate and compare detected musculoskeletal disorder (MSD) symptoms among the chainsaw workers in Croatia according to their employer (state company – Hrvatske šume Ltd. or private forestry contractor) and self-evaluated Workability Index. A combined three-stage research method was used: (a) defining a sample; (b) preparation and administration of questionnaire; and (c) data analysis and elaboration. The Standardized Nordic Questionnaire (SNQ) was used as a medium to detect musculoskeletal disorder symptoms in chainsaw operators and the Workability Index (WAI) questionnaire was used as a medium for workability self-evaluation. The field part of face-to-face data collection was conducted in the first quarter of 2022 with a total of 158 sampled workers interviewed directly at the forest worksite. Descriptive and inferential statistical methods were used to verify and analyze the data. The anatomical area with the highest 12-month period prevalence of MSD symptoms for all chainsaw operators is the low back (70.89%), followed by the shoulders (41.14%), neck (39.87%) and wrist/hands (36.71%). Research results, according to the employer, showed that workers employed by Hrvatske šume Ltd. have a higher prevalence of MSD symptoms in almost all anatomical locations compared to chainsaw operators employed by private forest contractors. Mean WAI Score among all respondents was 34.96 points (max. 49) falling into the rank »moderate«, while the current workability compared with the lifetime best was 7.33 (range 0–10). The results of MSD symptoms confirm the self-estimated higher values related to health problems caused by forestry work and lower WAI Score by workers employed in the state forestry sector compared to workers employed in private forestry sector. The prevalence of MSD symptoms, observed through WAI Score, showed a significantly lower percentage of affirmative responses for all anatomical regions except for shoulders in workers who need to maintain their workability. The obtained results show positive correlation with descriptive indicators, where younger workers with less chainsaw work experience have a lower prevalence of MSD symptoms and better WAI Score. In the discussion and conclusion part of the research in question, the need for development of possible solutions is emphasized. The proposed solutions can be included into educational programs or on-site training related to the MSD risks for professional chainsaw workers to change their behaviour that will reduce occupational risks.
{"title":"Workability and Physical Wellbeing Among Chainsaw Operators in Croatia","authors":"M. Landekić, M. Šporčić, M. Bačić, Z. Pandur, Matija Bakarić","doi":"10.5552/crojfe.2023.2073","DOIUrl":"https://doi.org/10.5552/crojfe.2023.2073","url":null,"abstract":"Motor-manual felling and wood processing is a high-risk work process where the chainsaw, in connection to other variables in the working environment, is a key and constant source of risk and danger for forest chainsaw operators. Pursuant to the foregoing, the purpose of this research is to investigate and compare detected musculoskeletal disorder (MSD) symptoms among the chainsaw workers in Croatia according to their employer (state company – Hrvatske šume Ltd. or private forestry contractor) and self-evaluated Workability Index. A combined three-stage research method was used: (a) defining a sample; (b) preparation and administration of questionnaire; and (c) data analysis and elaboration. The Standardized Nordic Questionnaire (SNQ) was used as a medium to detect musculoskeletal disorder symptoms in chainsaw operators and the Workability Index (WAI) questionnaire was used as a medium for workability self-evaluation. The field part of face-to-face data collection was conducted in the first quarter of 2022 with a total of 158 sampled workers interviewed directly at the forest worksite. Descriptive and inferential statistical methods were used to verify and analyze the data. The anatomical area with the highest 12-month period prevalence of MSD symptoms for all chainsaw operators is the low back (70.89%), followed by the shoulders (41.14%), neck (39.87%) and wrist/hands (36.71%). Research results, according to the employer, showed that workers employed by Hrvatske šume Ltd. have a higher prevalence of MSD symptoms in almost all anatomical locations compared to chainsaw operators employed by private forest contractors. Mean WAI Score among all respondents was 34.96 points (max. 49) falling into the rank »moderate«, while the current workability compared with the lifetime best was 7.33 (range 0–10). The results of MSD symptoms confirm the self-estimated higher values related to health problems caused by forestry work and lower WAI Score by workers employed in the state forestry sector compared to workers employed in private forestry sector. The prevalence of MSD symptoms, observed through WAI Score, showed a significantly lower percentage of affirmative responses for all anatomical regions except for shoulders in workers who need to maintain their workability. The obtained results show positive correlation with descriptive indicators, where younger workers with less chainsaw work experience have a lower prevalence of MSD symptoms and better WAI Score. In the discussion and conclusion part of the research in question, the need for development of possible solutions is emphasized. The proposed solutions can be included into educational programs or on-site training related to the MSD risks for professional chainsaw workers to change their behaviour that will reduce occupational risks.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42324052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.1725
R. Prinz, Blas Mola‐Yudego, J. Ala-Ilomäki, K. Väätäinen, Harri Lindeman, B. Talbot, J. Routa
Fuel consumption is one of the key parameters in mechanised forest operations, particularly on lower bearing capacity soils, as wheel chains or bogie tracks can have a strong effect on it. This study aims to analyse the fuel consumption of several individual wheeled cut-to-length forwarder set-ups with different types of bogie tracks on peatland using automatic recording of data bus information. Two types of forwarders, 8-wheeled and 10-wheeled, and three types of tracks were tested on peatland in Eastern Finland. A mixed-model approach is the basis to study the fuel consumption as a function of the soil bearing capacity, the number of passes of the machine on the same soil, the section (curve or straight) and other variables related to the machine performance and set-up, for a total of N=27,928 fuel observations on three machines in 33 plots (trail segments). The model results in an R2=0.78; the number of passes increases the fuel consumption significantly, while the soil bearing capacity did not affect the fuel consumption. There are, however, important differences between the machines performance, which are addressed in the model. By contributing to the knowledge on the connection between operational conditions and fuel consumption, the study can contribute to the aim towards a sustainable forest operation through minimizing negative environmental impacts and providing the necessary tools for further research efforts.
{"title":"Soil, Driving Speed and Driving Intensity Affect Fuel Consumption of Forwarders","authors":"R. Prinz, Blas Mola‐Yudego, J. Ala-Ilomäki, K. Väätäinen, Harri Lindeman, B. Talbot, J. Routa","doi":"10.5552/crojfe.2023.1725","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1725","url":null,"abstract":"Fuel consumption is one of the key parameters in mechanised forest operations, particularly on lower bearing capacity soils, as wheel chains or bogie tracks can have a strong effect on it. This study aims to analyse the fuel consumption of several individual wheeled cut-to-length forwarder set-ups with different types of bogie tracks on peatland using automatic recording of data bus information. Two types of forwarders, 8-wheeled and 10-wheeled, and three types of tracks were tested on peatland in Eastern Finland. A mixed-model approach is the basis to study the fuel consumption as a function of the soil bearing capacity, the number of passes of the machine on the same soil, the section (curve or straight) and other variables related to the machine performance and set-up, for a total of N=27,928 fuel observations on three machines in 33 plots (trail segments). The model results in an R2=0.78; the number of passes increases the fuel consumption significantly, while the soil bearing capacity did not affect the fuel consumption. There are, however, important differences between the machines performance, which are addressed in the model. By contributing to the knowledge on the connection between operational conditions and fuel consumption, the study can contribute to the aim towards a sustainable forest operation through minimizing negative environmental impacts and providing the necessary tools for further research efforts.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45395420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.1701
Ahmet Açıl, A. Aydın, R. Eker, A. Duyar
In terms of engineering standards, the dimensions of hydraulic structures such as culverts on forest roads should have the capability to drain the expected maximum discharge for a 50-year return period during their lifespan (i.e., 20 years). In Turkey, Talbot’s formula, as empirical method, has commonly been used in determining the required cross-sectional area (CSA) of the structures. However, in practice, forest road engineers in Turkey do not pay enough attention to their construction with required dimensions calculated by Talbot’s formula. In the present study, the Hydrological Engineering Centre – River Analysis System (HEC-RAS) model was used to evaluate the dimensions of installed structures in terms of their ability to drain maximum discharges, with the aim of determining the required dimensions for those that could not meet this requirement. To this purpose, the 6+000 km forest road No. 410 in Acısu Forest Enterprise, Gerede Forest Directorate (Bolu, Turkey) was selected as the study area. In total, 15 small watersheds crossed by the forest road were delineated, with only six of them having cross-drainage structures. The HEC-RAS model geometry was generated by manual unmanned aerial vehicle (UAV) flights at altitudes of 5–15 m, providing very high spatial resolution (<1 cm). The maximum discharges of the watersheds were estimated for the HEC-RAS model using the Rational, Kürsteiner, and Soil Conservation Service-Curve Number (SCS-CN) methods. Maximum discharges of 0.18–6.03 were found for the Rational method, 0.45–4.46 for the Kürsteiner method, and 0.25–7.97 for the SCS-CN method. According to the HEC-RAS hydraulic model CSA simulations, most of the installed culvert CSAs calculated by Talbot’s formula were found to be incapable of draining maximum discharges. The study concluded that the HEC-RAS model can provide accurate and reliable results for determining the dimensions of such structures for forest roads.
{"title":"Use of UAV Data and HEC-RAS Model for Dimensioning of Hydraulic Structures on Forest Roads","authors":"Ahmet Açıl, A. Aydın, R. Eker, A. Duyar","doi":"10.5552/crojfe.2023.1701","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1701","url":null,"abstract":"In terms of engineering standards, the dimensions of hydraulic structures such as culverts on forest roads should have the capability to drain the expected maximum discharge for a 50-year return period during their lifespan (i.e., 20 years). In Turkey, Talbot’s formula, as empirical method, has commonly been used in determining the required cross-sectional area (CSA) of the structures. However, in practice, forest road engineers in Turkey do not pay enough attention to their construction with required dimensions calculated by Talbot’s formula. In the present study, the Hydrological Engineering Centre – River Analysis System (HEC-RAS) model was used to evaluate the dimensions of installed structures in terms of their ability to drain maximum discharges, with the aim of determining the required dimensions for those that could not meet this requirement. To this purpose, the 6+000 km forest road No. 410 in Acısu Forest Enterprise, Gerede Forest Directorate (Bolu, Turkey) was selected as the study area. In total, 15 small watersheds crossed by the forest road were delineated, with only six of them having cross-drainage structures. The HEC-RAS model geometry was generated by manual unmanned aerial vehicle (UAV) flights at altitudes of 5–15 m, providing very high spatial resolution (<1 cm). The maximum discharges of the watersheds were estimated for the HEC-RAS model using the Rational, Kürsteiner, and Soil Conservation Service-Curve Number (SCS-CN) methods. Maximum discharges of 0.18–6.03 were found for the Rational method, 0.45–4.46 for the Kürsteiner method, and 0.25–7.97 for the SCS-CN method. According to the HEC-RAS hydraulic model CSA simulations, most of the installed culvert CSAs calculated by Talbot’s formula were found to be incapable of draining maximum discharges. The study concluded that the HEC-RAS model can provide accurate and reliable results for determining the dimensions of such structures for forest roads.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46710251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-12DOI: 10.5552/crojfe.2023.1731
Chetan M. Badgujar, D. Flippo, S. Badua, C. Baldwin
The encroachment of Eastern redcedar (ERC) (Juniperus virginiana L.) onto Great Plains prairies has become a serious threat to ecosystem functioning and grazing productivity. The uncontrolled spread of this invasive tree species has been called a »green glacier« converting grasslands into closed canopy woodlands. A pasture tree cutting robot was developed using a tracked Autonomous Ground Vehicle (AGV) equipped with a chainsaw bar to mitigate this green glacier dilemma. The prototype was fitted with amperage and voltage sensors to measure average power consumption and peak power requirements of tree cutting. It was evaluated on ERC and Honeylocust trees up to 20 cm in diameter. Cutting energy and time were determined to evaluate energy optimization and cutting time estimates. A pasture tree clearing energy consumption of the developed prototype was estimated for selected tree density/hectare. The prototype robot was successful in cutting down the intended size trees at a manageable power usage.
{"title":"Development and Evaluation of Pasture\u0000Tree Cutting Robot","authors":"Chetan M. Badgujar, D. Flippo, S. Badua, C. Baldwin","doi":"10.5552/crojfe.2023.1731","DOIUrl":"https://doi.org/10.5552/crojfe.2023.1731","url":null,"abstract":"The encroachment of Eastern redcedar (ERC) (Juniperus virginiana L.) onto Great Plains prairies has become a serious threat to ecosystem functioning and grazing productivity. The uncontrolled spread of this invasive tree species has been called a »green glacier« converting grasslands into closed canopy woodlands. A pasture tree cutting robot was developed using a tracked Autonomous Ground Vehicle (AGV) equipped with a chainsaw bar to mitigate this green glacier dilemma. The prototype was fitted with amperage and voltage sensors to measure average power consumption and peak power requirements of tree cutting. It was evaluated on ERC and Honeylocust trees up to 20 cm in diameter. Cutting energy and time were determined to evaluate energy optimization and cutting time estimates. A pasture tree clearing energy consumption of the developed prototype was estimated for selected tree density/hectare. The prototype robot was successful in cutting down the intended size trees at a manageable power usage.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44995556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}