The focus is on the statistical analysis of matrix-valued time series, where data is collected over a network of sensors, typically at spatial locations, over time. Each sensor records a vector of features at each time point, creating a vectorial time series for each sensor. The goal is to identify the dependency structure among these sensors and represent it with a graph. When only one feature per sensor is observed, vector auto-regressive (VAR) models are commonly used to infer Granger causality, resulting in a causal graph. The first contribution extends VAR models to matrix-variate models for the purpose of graph learning. Additionally, two online procedures are proposed for both low and high dimensions, enabling rapid updates of coefficient estimates as new samples arrive. In the high-dimensional setting, a novel Lasso-type approach is introduced, and homotopy algorithms are developed for online learning. An adaptive tuning procedure for the regularization parameter is also provided. Given that the application of auto-regressive models to data typically requires detrending, which is not feasible in an online context, the proposed AR models are augmented by incorporating trend as an additional parameter, with a particular focus on periodic trends. The online algorithms are adapted to these augmented data models, allowing for simultaneous learning of the graph and trend from streaming samples. Numerical experiments using both synthetic and real data demonstrate the effectiveness of the proposed methods.
n-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for n-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.
Covariate models, such as polynomial regression models, generalized linear models, and heteroscedastic models, are widely used in statistical applications. The importance of such models in statistical analysis is abundantly clear by the ever-increasing rate at which articles on covariate models are appearing in the statistical literature. Because of their flexibility, covariate models are increasingly being exploited as a convenient way to model data that consist of both a response variable and one or more covariate variables that affect the outcome of the response variable. Efficient and robust estimates for broadly defined semiparametric covariate models are investigated, and for this purpose the minimum distance approach is employed. In general, minimum distance estimators are automatically robust with respect to the stability of the quantity being estimated. In particular, minimum Hellinger distance estimation for parametric models produces estimators that are asymptotically efficient at the model density and simultaneously possess excellent robustness properties. For semiparametric covariate models, the minimum Hellinger distance method is extended and a minimum profile Hellinger distance estimator is proposed. Its asymptotic properties such as consistency are studied, and its finite-sample performance and robustness are examined by using Monte Carlo simulations and three real data analyses. Additionally, a computing algorithm is developed to ease the computation of the estimator.