首页 > 最新文献

Cell Communication and Signaling最新文献

英文 中文
Emerging functions of Plakophilin 4 in the control of cell contact dynamics.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-25 DOI: 10.1186/s12964-025-02106-1
Lisa Müller, Mechthild Hatzfeld

Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.

Plakophilin 4(PKP4,又称 p0071)是一种独特的犰狳家族蛋白,定位于粘连连接处,是一种能够聚合固着蛋白的支架蛋白。PKP4 还能调节粘连蛋白的再循环,这对实现连接动态至关重要。此外,PKP4 还通过小 Rho-GTP 酶调节肌动蛋白丝的组织,从而控制细胞的机械特性。在这种情况下,PKP4 控制着特定鸟嘌呤交换因子(GEFs)及其对手--GTPase 激活蛋白(GAPs)的定位和活性。通过与 Rho-GTPases、其调节因子和效应因子形成多蛋白复合物,PKP4 控制着 Rho 信号的时空活性,从而调节细胞粘附和细胞力学。在角质形成细胞中,PKP4 可防止分化,同时抑制增殖。这部分是通过与 Hippo 通路相互作用实现的,Hippo 通路控制转录辅助因子 YAP 和 TAZ 的活性。在一个反馈回路中,YAP/TAZ 调节 PKP4 的定位和功能。在此,我们回顾了 PKP4 在细胞信号传导、细胞力学、细胞粘附和生长控制方面的各种功能。我们将讨论这些功能如何汇聚在细胞粘附动力学的调控中,使细胞适应不断变化的环境,实现增殖、分层,同时保证细胞屏障功能。
{"title":"Emerging functions of Plakophilin 4 in the control of cell contact dynamics.","authors":"Lisa Müller, Mechthild Hatzfeld","doi":"10.1186/s12964-025-02106-1","DOIUrl":"10.1186/s12964-025-02106-1","url":null,"abstract":"<p><p>Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"109"},"PeriodicalIF":8.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting A2M-LRP1 reverses uterine spiral artery remodeling disorder and alleviates the progression of preeclampsia. 靶向 A2M-LRP1 可逆转子宫螺旋动脉重塑障碍并缓解子痫前期的进展。
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-24 DOI: 10.1186/s12964-025-02060-y
Zhengrui Huang, Ping Zhang, Ruiping Chen, Lu Sun, Jingyun Wang, Ruiling Yan, Mengyuan Liu, Yuzhen Ding, Jian Wang, Jiachun Wei, Wanchang Yin, Xinyao Lu, Guang Wang, Xuesong Yang, Ruiman Li

Background: Patients with early-onset preeclampsia (EOPE) have a most severe disease state. a2-macroglobulin (A2M) play a crucial role in the pathogenesis of EOPE, but its molecular basis and therapeutic potential remain unclear. This study aimed to elucidate the mechanisms of A2M in EOPE progression and explore the potential of A2M in the treatment of EOPE.

Methods: A2M-Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) blocker Receptor-associated protein (RAP) were utilized to alleviate the disease symptom of lipopolysaccharide (LPS) induced preeclampsia rat model. RNA-seq data sourced from public databases and morphological experiments were utilized to examine the relationship between the main fate of smooth muscle cell (SMC) during uterine spiral artery remodeling (SPA-REM) and A2M. Proteomic sequencing analysis of A2M overexpression rat placenta was used to identify the underlying mechanism. Further, LC-MS/MS analysis combined with Co-immunoprecipitation (Co-IP) was used to examine the interacting between A2M and underlying mechanism.

Results: Single-cell analysis and morphological experimental results suggest that SMC phenotype switching disorder is the main fate of SMC in the pathological of SPA-REM disorder, and A2M has a causal relationship with this process. Proteomic sequencing data suggest that A2M participates in this process through the RhoA-GTPase pathway, further experimental data provide evidences that A2M can directly upregulate RhoA-GTPase. Cytological and explant experiments suggest that RAP has better efficacy than A2M knockdown AAV vector, finally the efficacy of RAP was verified in the rat model of preeclampsia.

Conclusion: SMC A2M promotes the progression of preeclampsia by directly upregulating RhoA-GTPase. Our findings also reveal that A2M serve as a potential target for EOPE and provide a preliminary therapy for inhibit the combination of A2M-LRP1.

{"title":"Targeting A2M-LRP1 reverses uterine spiral artery remodeling disorder and alleviates the progression of preeclampsia.","authors":"Zhengrui Huang, Ping Zhang, Ruiping Chen, Lu Sun, Jingyun Wang, Ruiling Yan, Mengyuan Liu, Yuzhen Ding, Jian Wang, Jiachun Wei, Wanchang Yin, Xinyao Lu, Guang Wang, Xuesong Yang, Ruiman Li","doi":"10.1186/s12964-025-02060-y","DOIUrl":"10.1186/s12964-025-02060-y","url":null,"abstract":"<p><strong>Background: </strong>Patients with early-onset preeclampsia (EOPE) have a most severe disease state. a2-macroglobulin (A2M) play a crucial role in the pathogenesis of EOPE, but its molecular basis and therapeutic potential remain unclear. This study aimed to elucidate the mechanisms of A2M in EOPE progression and explore the potential of A2M in the treatment of EOPE.</p><p><strong>Methods: </strong>A2M-Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) blocker Receptor-associated protein (RAP) were utilized to alleviate the disease symptom of lipopolysaccharide (LPS) induced preeclampsia rat model. RNA-seq data sourced from public databases and morphological experiments were utilized to examine the relationship between the main fate of smooth muscle cell (SMC) during uterine spiral artery remodeling (SPA-REM) and A2M. Proteomic sequencing analysis of A2M overexpression rat placenta was used to identify the underlying mechanism. Further, LC-MS/MS analysis combined with Co-immunoprecipitation (Co-IP) was used to examine the interacting between A2M and underlying mechanism.</p><p><strong>Results: </strong>Single-cell analysis and morphological experimental results suggest that SMC phenotype switching disorder is the main fate of SMC in the pathological of SPA-REM disorder, and A2M has a causal relationship with this process. Proteomic sequencing data suggest that A2M participates in this process through the RhoA-GTPase pathway, further experimental data provide evidences that A2M can directly upregulate RhoA-GTPase. Cytological and explant experiments suggest that RAP has better efficacy than A2M knockdown AAV vector, finally the efficacy of RAP was verified in the rat model of preeclampsia.</p><p><strong>Conclusion: </strong>SMC A2M promotes the progression of preeclampsia by directly upregulating RhoA-GTPase. Our findings also reveal that A2M serve as a potential target for EOPE and provide a preliminary therapy for inhibit the combination of A2M-LRP1.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"107"},"PeriodicalIF":8.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NK cell immunopotentiators-loaded nanoliposomes enhance ADCC effect for targeted therapy against HER2-positive breast cancer.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-22 DOI: 10.1186/s12964-024-02023-9
Ruoxin Du, Changqing Cao, Dong Fan, Guodong Li, Shuangpeng Pu, Xinyao Xu, Mengmeng Liu, Gege Shi, Yuxin Wu, Qiang Hao, Yuan Gao, Juliang Zhang, Huadong Zhao, Cun Zhang

Trastuzumab serves as a cornerstone of first-line therapy for HER2-positive (HER2+) breast cancer; however, a significant challenge arises due to the emergence of resistance within approximately one year of commencement of treatment, particularly in advanced cases with metastatic disease where its efficacy is limited. Our investigation into the tumor tissue from HER2+ breast cancer patients, employing single-cell sequencing and bioinformatics analysis, has elucidated a crucial mechanism underlying the reduced responsiveness of tumors to trastuzumab: the diminished infiltration and activity of natural killer (NK) cells within the tumor microenvironment (TME). To counteract this impediment, we meticulously selected two potent immune-modulating peptides TKD and IP-10p, which are known to recruit and enhance the activity of NK cells. Through in vitro experiments, we substantiated that bolstering the tumor infiltration and activity of NK cells can lead to an enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) effect, thereby amplifying the anti-tumor activity of trastuzumab. Building upon this foundational discovery, we further designed HER2-targeted pH-sensitive nanoliposomes to encapsulate TKD and IP-10p peptides. The novel designed nanoliposomes were strategically employed in conjunction with NK cell supplement therapy within a HER2+ breast cancer model undergoing trastuzumab treatment, yielding a striking anti-tumor response and indicating that the combination strategy effectively reinvigorated the anti-tumor immune response. In essence, this study not only underscores a critical link between the diminished ADCC effect mediated by trastuzumab and the development of resistance in HER2+ breast cancer but also demonstrates leveraging HER2-targeted nanoliposomes to deliver NK cell immunopotentiators can significantly enhance the functional activity of NK cells and their infiltration within the TME, culminating in improved antitumor efficacy of trastuzumab through the augmentation of the ADCC effect.

{"title":"NK cell immunopotentiators-loaded nanoliposomes enhance ADCC effect for targeted therapy against HER2-positive breast cancer.","authors":"Ruoxin Du, Changqing Cao, Dong Fan, Guodong Li, Shuangpeng Pu, Xinyao Xu, Mengmeng Liu, Gege Shi, Yuxin Wu, Qiang Hao, Yuan Gao, Juliang Zhang, Huadong Zhao, Cun Zhang","doi":"10.1186/s12964-024-02023-9","DOIUrl":"10.1186/s12964-024-02023-9","url":null,"abstract":"<p><p>Trastuzumab serves as a cornerstone of first-line therapy for HER2-positive (HER2<sup>+</sup>) breast cancer; however, a significant challenge arises due to the emergence of resistance within approximately one year of commencement of treatment, particularly in advanced cases with metastatic disease where its efficacy is limited. Our investigation into the tumor tissue from HER2<sup>+</sup> breast cancer patients, employing single-cell sequencing and bioinformatics analysis, has elucidated a crucial mechanism underlying the reduced responsiveness of tumors to trastuzumab: the diminished infiltration and activity of natural killer (NK) cells within the tumor microenvironment (TME). To counteract this impediment, we meticulously selected two potent immune-modulating peptides TKD and IP-10p, which are known to recruit and enhance the activity of NK cells. Through in vitro experiments, we substantiated that bolstering the tumor infiltration and activity of NK cells can lead to an enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) effect, thereby amplifying the anti-tumor activity of trastuzumab. Building upon this foundational discovery, we further designed HER2-targeted pH-sensitive nanoliposomes to encapsulate TKD and IP-10p peptides. The novel designed nanoliposomes were strategically employed in conjunction with NK cell supplement therapy within a HER2<sup>+</sup> breast cancer model undergoing trastuzumab treatment, yielding a striking anti-tumor response and indicating that the combination strategy effectively reinvigorated the anti-tumor immune response. In essence, this study not only underscores a critical link between the diminished ADCC effect mediated by trastuzumab and the development of resistance in HER2<sup>+</sup> breast cancer but also demonstrates leveraging HER2-targeted nanoliposomes to deliver NK cell immunopotentiators can significantly enhance the functional activity of NK cells and their infiltration within the TME, culminating in improved antitumor efficacy of trastuzumab through the augmentation of the ADCC effect.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"106"},"PeriodicalIF":8.2,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-22 DOI: 10.1186/s12964-025-02104-3
Alexander Haidurov, Andrei O Zheltukhin, Anastasiya V Snezhkina, George S Krasnov, Anna V Kudryavtseva, Andrei V Budanov

Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.

{"title":"p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3.","authors":"Alexander Haidurov, Andrei O Zheltukhin, Anastasiya V Snezhkina, George S Krasnov, Anna V Kudryavtseva, Andrei V Budanov","doi":"10.1186/s12964-025-02104-3","DOIUrl":"10.1186/s12964-025-02104-3","url":null,"abstract":"<p><p>Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"105"},"PeriodicalIF":8.2,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The efferocytosis dilemma: how neutrophil extracellular traps and PI3K/Rac1 complicate diabetic wound healing. 流出细胞的困境:中性粒细胞胞外捕获物和 PI3K/Rac1 如何使糖尿病伤口愈合复杂化?
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-21 DOI: 10.1186/s12964-025-02092-4
Yulin Xie, Jiaman Yang, He Zhu, Rongya Yang, Yunlong Fan

Aims/hypothesis: The resolution of apoptotic cells (ACs) is crucial for wound healing and tissue remodeling and is often impaired by persistent inflammation. This study aimed to elucidate the impact of neutrophil extracellular traps (NETs) on diabetic wound healing by targeting the phosphoinositide 3-kinase/Ras-related C3 botulinum toxin substrate 1 (PI3K/Rac1) signaling pathway, which is pivotal for macrophage efferocytosis.

Methods: A streptozotocin-induced diabetic mouse model was used to assess the impact of NETs on efferocytosis in vivo. The effects of NETs on macrophage efferocytosis and wound healing were evaluated using specific inhibitors and agonists targeting the PI3K/Rac1 pathway. In vitro, macrophages from diabetic wounds or cell lines (Raw264.7) were treated with NETs and a panel of pharmacological agents of the PI3K/Rac1 pathway to evaluate macrophage efferocytosis.

Results: NETs were found to inhibit macrophage efferocytosis, resulting in delayed clearance of ACs that accumulate within the wounds. Inhibition of NET formation in diabetic mice rescued impaired efferocytosis, accompanied by reactivation of PI3K and Rac1 in macrophages. Moreover, pharmacological agents targeting the PI3K/Rac1 pathway restored NETs-induced impairment in efferocytosis, leading to rapid wound healing. Raw264.7 cells exhibited elevated activation levels of PI3K and Rac1 when co-cultured with ACs in vitro. Nevertheless, this signaling activation was inhibited when cultured in a NETs-conditioned medium, leading to attenuated efferocytosis.

Conclusions/interpretation: Targeting NETs and the PI3K/Rac1 pathway emerges as a potential therapeutic strategy to enhance healing in diabetic wounds by promoting macrophage efferocytosis.

{"title":"The efferocytosis dilemma: how neutrophil extracellular traps and PI3K/Rac1 complicate diabetic wound healing.","authors":"Yulin Xie, Jiaman Yang, He Zhu, Rongya Yang, Yunlong Fan","doi":"10.1186/s12964-025-02092-4","DOIUrl":"10.1186/s12964-025-02092-4","url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>The resolution of apoptotic cells (ACs) is crucial for wound healing and tissue remodeling and is often impaired by persistent inflammation. This study aimed to elucidate the impact of neutrophil extracellular traps (NETs) on diabetic wound healing by targeting the phosphoinositide 3-kinase/Ras-related C3 botulinum toxin substrate 1 (PI3K/Rac1) signaling pathway, which is pivotal for macrophage efferocytosis.</p><p><strong>Methods: </strong>A streptozotocin-induced diabetic mouse model was used to assess the impact of NETs on efferocytosis in vivo. The effects of NETs on macrophage efferocytosis and wound healing were evaluated using specific inhibitors and agonists targeting the PI3K/Rac1 pathway. In vitro, macrophages from diabetic wounds or cell lines (Raw264.7) were treated with NETs and a panel of pharmacological agents of the PI3K/Rac1 pathway to evaluate macrophage efferocytosis.</p><p><strong>Results: </strong>NETs were found to inhibit macrophage efferocytosis, resulting in delayed clearance of ACs that accumulate within the wounds. Inhibition of NET formation in diabetic mice rescued impaired efferocytosis, accompanied by reactivation of PI3K and Rac1 in macrophages. Moreover, pharmacological agents targeting the PI3K/Rac1 pathway restored NETs-induced impairment in efferocytosis, leading to rapid wound healing. Raw264.7 cells exhibited elevated activation levels of PI3K and Rac1 when co-cultured with ACs in vitro. Nevertheless, this signaling activation was inhibited when cultured in a NETs-conditioned medium, leading to attenuated efferocytosis.</p><p><strong>Conclusions/interpretation: </strong>Targeting NETs and the PI3K/Rac1 pathway emerges as a potential therapeutic strategy to enhance healing in diabetic wounds by promoting macrophage efferocytosis.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"103"},"PeriodicalIF":8.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin D impedes eosinophil chemotaxis via inhibiting glycolysis-induced CCL26 expression in eosinophilic chronic rhinosinusitis with nasal polyps.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-21 DOI: 10.1186/s12964-025-02078-2
Weiqiang Huang, Yana Zhang, Yue Li, Junming Ma, Xia Li, Yanjie Jiang, Jianqi Wang, Haotian Wu, Xiaohong Chen, Zizhen Huang, Xifu Wu, Xiaoping Lai, Donglin Li, Lihong Chang, Gehua Zhang

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is likely to relapse due to aberrant eosinophil infiltration. The deficiency of Vitamin D (VD) is associated with increased eosinophil infiltration in eosinophilic oesophagitis. However, the role of VD in eosinophilic CRSwNP (ECRSwNP) remains unclear. This study aims to explore the effects of VD on eosinophil chemotaxis in ECRSwNP and the underlying mechanisms.

Methods: Human nasal mucosal tissues were collected from the control group, patients with non-ECRSwNP and those with ECRSwNP. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of VD and CCL26 in the nasal mucosa, plasma, or human primary nasal epithelial cells (hNECs). hNECs and eosinophils from patients were cultured to investigate the effect of VD on eosinophil chemotaxis and CCL26 expression via eosinophil migration assay, Western blot, and ELISA. Transcriptome sequencing, pathway enrichment analysis, Western blot and immunohistochemical staining were used to determine the key signaling pathway involved in eosinophil chemotaxis.

Results: A significant decrease in VD levels was observed in the nasal mucosa of patients with ECRSwNP, which correlated with increased local eosinophil infiltration. Furthermore, pathway enrichment analysis suggested that glycolysis signaling was promoted in the ECRSwNP group, verified by enhanced expression of glycolytic key enzymes that were positively correlated with eosinophil infiltration in nasal mucosa from patients with ECRSwNP. VD suppressed eosinophil chemotaxis in vitro by inhibiting CCL26 expression. Glycolysis regulated CCL26 expression via the ERK pathway and lactate, which promoted the expression and stability of CCL26 protein. VD attenuated glycolysis, leading to decreased production of lactate and inactivation of the ERK pathway. The decrease in lactate production suppressed eosinophil chemotaxis. Moreover, the ERK pathway activator reversed the inhibitory effect of VD on eosinophil chemotaxis.

Conclusions: VD impedes eosinophil chemotaxis by inhibiting glycolysis - induced CCL26 expression via attenuating the activation of the ERK pathway and reducing lactate production. VD supplementation may be a novel strategy to treat ECRSwNP.

{"title":"Vitamin D impedes eosinophil chemotaxis via inhibiting glycolysis-induced CCL26 expression in eosinophilic chronic rhinosinusitis with nasal polyps.","authors":"Weiqiang Huang, Yana Zhang, Yue Li, Junming Ma, Xia Li, Yanjie Jiang, Jianqi Wang, Haotian Wu, Xiaohong Chen, Zizhen Huang, Xifu Wu, Xiaoping Lai, Donglin Li, Lihong Chang, Gehua Zhang","doi":"10.1186/s12964-025-02078-2","DOIUrl":"10.1186/s12964-025-02078-2","url":null,"abstract":"<p><strong>Background: </strong>Chronic rhinosinusitis with nasal polyps (CRSwNP) is likely to relapse due to aberrant eosinophil infiltration. The deficiency of Vitamin D (VD) is associated with increased eosinophil infiltration in eosinophilic oesophagitis. However, the role of VD in eosinophilic CRSwNP (ECRSwNP) remains unclear. This study aims to explore the effects of VD on eosinophil chemotaxis in ECRSwNP and the underlying mechanisms.</p><p><strong>Methods: </strong>Human nasal mucosal tissues were collected from the control group, patients with non-ECRSwNP and those with ECRSwNP. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of VD and CCL26 in the nasal mucosa, plasma, or human primary nasal epithelial cells (hNECs). hNECs and eosinophils from patients were cultured to investigate the effect of VD on eosinophil chemotaxis and CCL26 expression via eosinophil migration assay, Western blot, and ELISA. Transcriptome sequencing, pathway enrichment analysis, Western blot and immunohistochemical staining were used to determine the key signaling pathway involved in eosinophil chemotaxis.</p><p><strong>Results: </strong>A significant decrease in VD levels was observed in the nasal mucosa of patients with ECRSwNP, which correlated with increased local eosinophil infiltration. Furthermore, pathway enrichment analysis suggested that glycolysis signaling was promoted in the ECRSwNP group, verified by enhanced expression of glycolytic key enzymes that were positively correlated with eosinophil infiltration in nasal mucosa from patients with ECRSwNP. VD suppressed eosinophil chemotaxis in vitro by inhibiting CCL26 expression. Glycolysis regulated CCL26 expression via the ERK pathway and lactate, which promoted the expression and stability of CCL26 protein. VD attenuated glycolysis, leading to decreased production of lactate and inactivation of the ERK pathway. The decrease in lactate production suppressed eosinophil chemotaxis. Moreover, the ERK pathway activator reversed the inhibitory effect of VD on eosinophil chemotaxis.</p><p><strong>Conclusions: </strong>VD impedes eosinophil chemotaxis by inhibiting glycolysis - induced CCL26 expression via attenuating the activation of the ERK pathway and reducing lactate production. VD supplementation may be a novel strategy to treat ECRSwNP.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"104"},"PeriodicalIF":8.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NCAM1-SHIP2 axis upon recognizing microbes inhibits the expressions of inflammatory factors through P38-H3K4me and P38-NF-κB pathways in oyster.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1186/s12964-025-02087-1
Jiejie Sun, Xiangqi Shi, Mengjia Wang, Muchun He, Wenwen Yang, Linsheng Song

Neural cell adhesion molecule 1 (NCAM1/CD56) as a well-known surface marker for natural killer (NK) cells plays important roles in cell migration, adhesion, and inflammation. In the present study, NCAM1 homolog containingthree immunoglobulin domains, one fibronectin type 3 domain, a transmembrane region and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) was identified from the Pacific oyster, Crassostrea gigas (defined as CgNCAM1). The mRNA transcripts of CgNCAM1 were highly expressed in haemocytes. The mRNA expressions of CgNCAM1 in haemocytes increased significantly after Vibrio splendidus stimulation. The positive green signals of CgNCAM1 and SH2-containing inositol 5-phosphatase (CgSHIP2) could translocate onto the haemocyte membrane after V. splendidus stimulation. The recombinant extracellular domains of CgNCAM1 exhibited binding activity towards various pathogen-associated molecular patterns (PAMPs) and microbes. Upon binding to its ligands, CgNCAM1 recruited CgSHIP2 to transduce inhibitor signals to reduce the phosphorylation of CgP38. The inhibition of CgP38 reduced the methylation of histone H3K4 and nuclear translocation of NF-κB, which eventually inhibited the mRNA expressions of inflammatory factors (CgIL17-2/3/6 and CgTNF-2) to suppress inflammation. These results suggested that CgNCAM1 could function as an immune checkpoint to sense different PAMPs and microbes and reduce the inflammation through inhibiting P38-epigenetic and P38-NF-κB pathways in oysters.

{"title":"NCAM1-SHIP2 axis upon recognizing microbes inhibits the expressions of inflammatory factors through P38-H3K4me and P38-NF-κB pathways in oyster.","authors":"Jiejie Sun, Xiangqi Shi, Mengjia Wang, Muchun He, Wenwen Yang, Linsheng Song","doi":"10.1186/s12964-025-02087-1","DOIUrl":"10.1186/s12964-025-02087-1","url":null,"abstract":"<p><p>Neural cell adhesion molecule 1 (NCAM1/CD56) as a well-known surface marker for natural killer (NK) cells plays important roles in cell migration, adhesion, and inflammation. In the present study, NCAM1 homolog containingthree immunoglobulin domains, one fibronectin type 3 domain, a transmembrane region and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) was identified from the Pacific oyster, Crassostrea gigas (defined as CgNCAM1). The mRNA transcripts of CgNCAM1 were highly expressed in haemocytes. The mRNA expressions of CgNCAM1 in haemocytes increased significantly after Vibrio splendidus stimulation. The positive green signals of CgNCAM1 and SH2-containing inositol 5-phosphatase (CgSHIP2) could translocate onto the haemocyte membrane after V. splendidus stimulation. The recombinant extracellular domains of CgNCAM1 exhibited binding activity towards various pathogen-associated molecular patterns (PAMPs) and microbes. Upon binding to its ligands, CgNCAM1 recruited CgSHIP2 to transduce inhibitor signals to reduce the phosphorylation of CgP38. The inhibition of CgP38 reduced the methylation of histone H3K4 and nuclear translocation of NF-κB, which eventually inhibited the mRNA expressions of inflammatory factors (CgIL17-2/3/6 and CgTNF-2) to suppress inflammation. These results suggested that CgNCAM1 could function as an immune checkpoint to sense different PAMPs and microbes and reduce the inflammation through inhibiting P38-epigenetic and P38-NF-κB pathways in oysters.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"102"},"PeriodicalIF":8.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12964-025-02069-3
Qiuli Xu, Xin Hua, Bingbing Li, Bei Jiang, Jiajia Jin, Ranpu Wu, Yanli Gu, Hao Xu, Qinpei Cheng, Suhua Zhu, Fang Zhang, Tangfeng Lv, Yong Song

Background: Our team has previously found that the stimulator of interferon genes (STING) plays a more significant anti-tumor role in host immune cells than in tumor cells. Although STING is necessary for CD8 + T cells to exert immunological activity, its effect on CD8 + T cells remains debatable. In this study, we used both in vitro and in vivo models to explore the metabolic effects of STING on CD8 + T cells.

Methods: Peripheral blood lymphocytes were procured from non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 therapy to investigate the correlation between STING expression levels, CD8 + T-cell subsets, and immunotherapy efficacy. STING knockout (STING-KO) mice were used for in vivo studies. RNA-seq, seahorse, flow cytometry, electron microscopy, qPCR, immunofluorescence, western blotting, and immunoprecipitation were performed to explore the underlying mechanisms of STING in regulating CD8 + T cell function.

Results: We discovered that the expression level of STING in immune cells exhibited a significant correlation with immunotherapy efficacy, as well as with the proportion of central memory CD8 + T cells. Moreover, we found that the loss of the STING gene results in a reduction in the number of mitochondria and a change in the metabolic pathway selection, thereby inducing excessive glycolysis in CD8 + T cells. This excessive glycolysis generates high levels of lactate, which further inhibits IFN-γ secretion and impacts memory T cell differentiation. Correcting the glycolysis disorder partially restored function and IFN-γ secretion, rescued the central memory CD8 + T subset, and improved immunotherapy in STING-KO mice. This provides a new treatment strategy for patients with low STING expression and a poor response to immunotherapy.

Conclusion: Intrinsic STING of CD8 + T cells affects their function through the HK2/Lactate/IFN-γ axis and affects memory differentiation by regulating glycolysis.

{"title":"Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects.","authors":"Qiuli Xu, Xin Hua, Bingbing Li, Bei Jiang, Jiajia Jin, Ranpu Wu, Yanli Gu, Hao Xu, Qinpei Cheng, Suhua Zhu, Fang Zhang, Tangfeng Lv, Yong Song","doi":"10.1186/s12964-025-02069-3","DOIUrl":"10.1186/s12964-025-02069-3","url":null,"abstract":"<p><strong>Background: </strong>Our team has previously found that the stimulator of interferon genes (STING) plays a more significant anti-tumor role in host immune cells than in tumor cells. Although STING is necessary for CD8 + T cells to exert immunological activity, its effect on CD8 + T cells remains debatable. In this study, we used both in vitro and in vivo models to explore the metabolic effects of STING on CD8 + T cells.</p><p><strong>Methods: </strong>Peripheral blood lymphocytes were procured from non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 therapy to investigate the correlation between STING expression levels, CD8 + T-cell subsets, and immunotherapy efficacy. STING knockout (STING-KO) mice were used for in vivo studies. RNA-seq, seahorse, flow cytometry, electron microscopy, qPCR, immunofluorescence, western blotting, and immunoprecipitation were performed to explore the underlying mechanisms of STING in regulating CD8 + T cell function.</p><p><strong>Results: </strong>We discovered that the expression level of STING in immune cells exhibited a significant correlation with immunotherapy efficacy, as well as with the proportion of central memory CD8 + T cells. Moreover, we found that the loss of the STING gene results in a reduction in the number of mitochondria and a change in the metabolic pathway selection, thereby inducing excessive glycolysis in CD8 + T cells. This excessive glycolysis generates high levels of lactate, which further inhibits IFN-γ secretion and impacts memory T cell differentiation. Correcting the glycolysis disorder partially restored function and IFN-γ secretion, rescued the central memory CD8 + T subset, and improved immunotherapy in STING-KO mice. This provides a new treatment strategy for patients with low STING expression and a poor response to immunotherapy.</p><p><strong>Conclusion: </strong>Intrinsic STING of CD8 + T cells affects their function through the HK2/Lactate/IFN-γ axis and affects memory differentiation by regulating glycolysis.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"99"},"PeriodicalIF":8.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12964-025-02096-0
Daria Perepletchikova, Polina Kuchur, Liubov Basovich, Irina Khvorova, Arseniy Lobov, Kseniia Azarkina, Nikolay Aksenov, Svetlana Bozhkova, Vitaliy Karelkin, Anna Malashicheva

Background: Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied.

Methods: Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing.

Results: EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation.

Conclusion: The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.

{"title":"Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling.","authors":"Daria Perepletchikova, Polina Kuchur, Liubov Basovich, Irina Khvorova, Arseniy Lobov, Kseniia Azarkina, Nikolay Aksenov, Svetlana Bozhkova, Vitaliy Karelkin, Anna Malashicheva","doi":"10.1186/s12964-025-02096-0","DOIUrl":"10.1186/s12964-025-02096-0","url":null,"abstract":"<p><strong>Background: </strong>Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied.</p><p><strong>Methods: </strong>Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing.</p><p><strong>Results: </strong>EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation.</p><p><strong>Conclusion: </strong>The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"100"},"PeriodicalIF":8.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome.
IF 8.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-19 DOI: 10.1186/s12964-025-02091-5
Laura Merino-Cacho, Orhi Barroso-Gomila, Mónica Pozo-Rodríguez, Veronica Muratore, Claudia Guinea-Pérez, Álvaro Serrano, Coralia Pérez, Sandra Cano-López, Ainhoa Urcullu, Mikel Azkargorta, Ibon Iloro, Carles Galdeano, Jordi Juárez-Jiménez, Ugo Mayor, Felix Elortza, Rosa Barrio, James D Sutherland

Background: The specificity of the ubiquitination process is mediated by the E3 ligases. Discriminating genuine substrates of E3s from mere interacting proteins is one of the major challenges in the field. We previously developed BioE3, a biotin-based approach that uses BirA-E3 fusions together with ubiquitin fused to a low-affinity AviTag to obtain a site-specific and proximity-dependent biotinylation of the substrates. We proved the suitability of BioE3 to identify targets of RING and HECT-type E3 ligases.

Methods: BioE3 experiments were performed in HEK293FT and U2OS stable cell lines expressing TRIPZ-bioGEFUb transiently transfected with BirA-cereblon (CRBN). Cells were seeded using biotin-free media, followed later by a short-biotin pulse. We evaluated the applicability of the BioE3 system to CRBN and molecular glues by Western blot and confocal microscopy, blocking the proteasome with bortezomib, inhibiting NEDDylation with MLN4924 and treating the cells with pomalidomide. For the identification of endogenous substrates and neosubstrates we analyzed the eluates of streptavidin pull-downs of BioE3 experiments by LC-MS/MS. Analysis of targets for which ubiquitination changes significantly upon treatment was done using two-sided Student's t-test. Orthogonal validations were performed by histidine pull-down, GFP-trap and computational modelling.

Results: Here we demonstrate that BioE3 is suitable for the multi-protein complex Cullin-RING E3s ligases (CRLs), the most utilized E3-type for targeted protein degradation (TPD) strategies. Using CRBN as proof of concept, one of the substrate receptors of CRL4 E3 ligase, we identified both endogenous substrates and novel neosubstrates upon pomalidomide treatment, including CSDE1 which contains a G-loop motif potentially involved in the binding to CRBN in presence of pomalidomide. Importantly, we observed a major rearrangement of the endogenous ubiquitination landscape upon treatment with this molecular glue.

Conclusions: The ability of BioE3 to detect and compare both substrates and neosubstrates, as well as how substrates change in response to treatments, will facilitate both on-target and off-target identifications and offer a broader characterization and validation of TPD compounds, like molecular glues and PROTACs.

{"title":"Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome.","authors":"Laura Merino-Cacho, Orhi Barroso-Gomila, Mónica Pozo-Rodríguez, Veronica Muratore, Claudia Guinea-Pérez, Álvaro Serrano, Coralia Pérez, Sandra Cano-López, Ainhoa Urcullu, Mikel Azkargorta, Ibon Iloro, Carles Galdeano, Jordi Juárez-Jiménez, Ugo Mayor, Felix Elortza, Rosa Barrio, James D Sutherland","doi":"10.1186/s12964-025-02091-5","DOIUrl":"10.1186/s12964-025-02091-5","url":null,"abstract":"<p><strong>Background: </strong>The specificity of the ubiquitination process is mediated by the E3 ligases. Discriminating genuine substrates of E3s from mere interacting proteins is one of the major challenges in the field. We previously developed BioE3, a biotin-based approach that uses BirA-E3 fusions together with ubiquitin fused to a low-affinity AviTag to obtain a site-specific and proximity-dependent biotinylation of the substrates. We proved the suitability of BioE3 to identify targets of RING and HECT-type E3 ligases.</p><p><strong>Methods: </strong>BioE3 experiments were performed in HEK293FT and U2OS stable cell lines expressing TRIPZ-bio<sup>GEF</sup>Ub transiently transfected with BirA-cereblon (CRBN). Cells were seeded using biotin-free media, followed later by a short-biotin pulse. We evaluated the applicability of the BioE3 system to CRBN and molecular glues by Western blot and confocal microscopy, blocking the proteasome with bortezomib, inhibiting NEDDylation with MLN4924 and treating the cells with pomalidomide. For the identification of endogenous substrates and neosubstrates we analyzed the eluates of streptavidin pull-downs of BioE3 experiments by LC-MS/MS. Analysis of targets for which ubiquitination changes significantly upon treatment was done using two-sided Student's t-test. Orthogonal validations were performed by histidine pull-down, GFP-trap and computational modelling.</p><p><strong>Results: </strong>Here we demonstrate that BioE3 is suitable for the multi-protein complex Cullin-RING E3s ligases (CRLs), the most utilized E3-type for targeted protein degradation (TPD) strategies. Using CRBN as proof of concept, one of the substrate receptors of CRL4 E3 ligase, we identified both endogenous substrates and novel neosubstrates upon pomalidomide treatment, including CSDE1 which contains a G-loop motif potentially involved in the binding to CRBN in presence of pomalidomide. Importantly, we observed a major rearrangement of the endogenous ubiquitination landscape upon treatment with this molecular glue.</p><p><strong>Conclusions: </strong>The ability of BioE3 to detect and compare both substrates and neosubstrates, as well as how substrates change in response to treatments, will facilitate both on-target and off-target identifications and offer a broader characterization and validation of TPD compounds, like molecular glues and PROTACs.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"101"},"PeriodicalIF":8.2,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Communication and Signaling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1