Pub Date : 2010-12-01DOI: 10.1007/s10558-010-9104-1
Sharon Zlochiver
Current density threshold and liminal area are subthreshold parameters of the cardiac tissue that indicate its susceptibility to external and internal stimulations. Extensive experimental and theoretical research has been conducted to quantify these two parameters in normal conditions for both animal and human models. Here we employed a 2D numerical model of human cardiac tissue to assess these subthreshold parameters under the pathological conditions of heart failure and fibrosis. Stimuli were applied over an area ranging from 0.04 to 1 mm² using various pulse durations. The current density threshold decreased with increasing stimulation area or pulse duration. No significant changes were found in both parameters between control conditions and heart failure in the atrial tissue, while in the ventricular tissue, heart failure resulted in significantly reduced excitability with higher stimulation current magnitudes needed for excitation and larger liminal areas. This results from the specific ionic remodeling in ventricular heart failure that affects both subthreshold active currents such as I(K₁) and connexin 43 conductance. In fibrosis, increased fibroblast to myocyte coupling coefficient had a non-linear influence on current density thresholds, with an initial increase of current magnitude followed by a relaxation phase down to the current magnitude threshold for the control condition with no fibrosis. The results show that subthreshold excitation properties of the myocardium are influenced in a complex, non-linear manner by cardiac pathologies. Such observations may contribute to our understanding of impulse capturing properties, relevant, for example, for the generation of ectopic foci-originated arrhythmias and for the efficient design of cardiac stimulating electrodes.
{"title":"Subthreshold parameters of cardiac tissue in a bi-layer computer model of heart failure.","authors":"Sharon Zlochiver","doi":"10.1007/s10558-010-9104-1","DOIUrl":"https://doi.org/10.1007/s10558-010-9104-1","url":null,"abstract":"<p><p>Current density threshold and liminal area are subthreshold parameters of the cardiac tissue that indicate its susceptibility to external and internal stimulations. Extensive experimental and theoretical research has been conducted to quantify these two parameters in normal conditions for both animal and human models. Here we employed a 2D numerical model of human cardiac tissue to assess these subthreshold parameters under the pathological conditions of heart failure and fibrosis. Stimuli were applied over an area ranging from 0.04 to 1 mm² using various pulse durations. The current density threshold decreased with increasing stimulation area or pulse duration. No significant changes were found in both parameters between control conditions and heart failure in the atrial tissue, while in the ventricular tissue, heart failure resulted in significantly reduced excitability with higher stimulation current magnitudes needed for excitation and larger liminal areas. This results from the specific ionic remodeling in ventricular heart failure that affects both subthreshold active currents such as I(K₁) and connexin 43 conductance. In fibrosis, increased fibroblast to myocyte coupling coefficient had a non-linear influence on current density thresholds, with an initial increase of current magnitude followed by a relaxation phase down to the current magnitude threshold for the control condition with no fibrosis. The results show that subthreshold excitation properties of the myocardium are influenced in a complex, non-linear manner by cardiac pathologies. Such observations may contribute to our understanding of impulse capturing properties, relevant, for example, for the generation of ectopic foci-originated arrhythmias and for the efficient design of cardiac stimulating electrodes.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 4","pages":"190-200"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9104-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29473069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-01DOI: 10.1007/s10558-010-9107-y
John K-J Li, Ying Zhu, Pamela S Geipel
Similar pulse pressure increases and flow reductions have been reported by many investigators, despite dissimilar forms of arterial loading applied. Increased vascular load is most commonly observed due to mechanical and vasoactive interventions. The present study intended to differentiate the hemodynamic contributions of these two forms of arterial loading at closely matched blood pressure levels. To accomplish this, proximal aortic characteristic impedance (Z(o)), total arterial compliance (C), peripheral vascular resistance (R(s)) and time-domain resolved forward (P(f)) and reflected (P(r)) waves were obtained in six anesthetized, thoracotomized and ventilated dogs. Acute loading was accomplished by brief descending thoracic aorta (DTA) occlusion or by intravenous bolus infusion of methoxamine (MTX:5 mg/ml) Systolic pressure increases were matched to a similar extent. Results showed that pulse pressures were drastically increased, reflecting large increases in wave reflections and decreases in arterial compliances. Changes in Z(o), R(s) and C were quantitatively different between the two forms of loading. DTA occlusion primarily increased Z(o) and R(s) with a concurrently large reduction in C. MTX infusion significantly increased small vessel R(s) to the same extent as DTA occlusion, but with a slight decrease in C secondary to an increase in pressure, with Z(o) unchanged. Examination of dynamic loading showed similar increases in reflection coefficients, but P(f) and P(r) were qualitatively different. We conclude that vasoactive methoxamine infusion provides primarily an increased resistive load, while mechanical DTA occlusion provides an increased complex load to the left ventricle. These loads also occur earlier and variably during ventricular ejection.
{"title":"Pulse pressure, arterial compliance and wave reflection under differential vasoactive and mechanical loading.","authors":"John K-J Li, Ying Zhu, Pamela S Geipel","doi":"10.1007/s10558-010-9107-y","DOIUrl":"https://doi.org/10.1007/s10558-010-9107-y","url":null,"abstract":"<p><p>Similar pulse pressure increases and flow reductions have been reported by many investigators, despite dissimilar forms of arterial loading applied. Increased vascular load is most commonly observed due to mechanical and vasoactive interventions. The present study intended to differentiate the hemodynamic contributions of these two forms of arterial loading at closely matched blood pressure levels. To accomplish this, proximal aortic characteristic impedance (Z(o)), total arterial compliance (C), peripheral vascular resistance (R(s)) and time-domain resolved forward (P(f)) and reflected (P(r)) waves were obtained in six anesthetized, thoracotomized and ventilated dogs. Acute loading was accomplished by brief descending thoracic aorta (DTA) occlusion or by intravenous bolus infusion of methoxamine (MTX:5 mg/ml) Systolic pressure increases were matched to a similar extent. Results showed that pulse pressures were drastically increased, reflecting large increases in wave reflections and decreases in arterial compliances. Changes in Z(o), R(s) and C were quantitatively different between the two forms of loading. DTA occlusion primarily increased Z(o) and R(s) with a concurrently large reduction in C. MTX infusion significantly increased small vessel R(s) to the same extent as DTA occlusion, but with a slight decrease in C secondary to an increase in pressure, with Z(o) unchanged. Examination of dynamic loading showed similar increases in reflection coefficients, but P(f) and P(r) were qualitatively different. We conclude that vasoactive methoxamine infusion provides primarily an increased resistive load, while mechanical DTA occlusion provides an increased complex load to the left ventricle. These loads also occur earlier and variably during ventricular ejection.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 4","pages":"170-5"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9107-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29531569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis of digital volume pulse (DVP) signal measured by photoplethysmograph (PPG) technique is a low cost non-invasive method of obtaining vital information related to arterial conditions. In this paper, we present a new two-pulse synthesis (TPS) model for deriving arterial parameters, useful for noninvasive assessment of human vascular health. The model is based on the use of Rayleigh function. Relevance of the proposed model is established by applying it on a sample set of 113 PPG signals, obtained form healthy and treated hypertensive subjects. The TPS model compares well with the conventional methods in determining parameters such as pulse transit time or foot-to-foot delay (D), reflection index (RI), stiffness index (SI) and pulse wave velocity (PWV). A new parameter, viz. differential pulse spread (DPS) has also been introduced for DVP signals using the model. The differential pulse spread provides a new dimension to estimate the process of arterial degeneration.
{"title":"A new two-pulse synthesis model for digital volume pulse signal analysis.","authors":"Dharitri Goswami, Koel Chaudhuri, Jayanta Mukherjee","doi":"10.1007/s10558-010-9098-8","DOIUrl":"https://doi.org/10.1007/s10558-010-9098-8","url":null,"abstract":"<p><p>Analysis of digital volume pulse (DVP) signal measured by photoplethysmograph (PPG) technique is a low cost non-invasive method of obtaining vital information related to arterial conditions. In this paper, we present a new two-pulse synthesis (TPS) model for deriving arterial parameters, useful for noninvasive assessment of human vascular health. The model is based on the use of Rayleigh function. Relevance of the proposed model is established by applying it on a sample set of 113 PPG signals, obtained form healthy and treated hypertensive subjects. The TPS model compares well with the conventional methods in determining parameters such as pulse transit time or foot-to-foot delay (D), reflection index (RI), stiffness index (SI) and pulse wave velocity (PWV). A new parameter, viz. differential pulse spread (DPS) has also been introduced for DVP signals using the model. The differential pulse spread provides a new dimension to estimate the process of arterial degeneration.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"109-17"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9098-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29207406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9103-2
M R Homaeinezhad, A Ghaffari, H Najjaran Toosi, M Tahmasebi, M M Daevaeiha
The aim of this study is to develop and describe a new ambulatory holter electrocardiogram (ECG) events detection-delineation algorithm with the major focus on the bounded false-alarm probability (FAP) segmentation of an information-optimized decision statistic. After implementation of appropriate preprocessing methods to the discrete wavelet transform (DWT) of the original ECG data, a uniform length sliding window is applied to the obtained signal and in each slid, six feature vectors namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated to construct a newly proposed principal components analyzed geometric index (PCAGI) by application of a linear orthonormal projection. In the next step, the α-level Neyman-Pearson classifier (which is a FAP controlled tester) is implemented to detect and delineate QRS complexes. The presented method was applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7, 3.8 and 6.1 m for P-wave, QRS complex and T-wave, respectively. Also, the proposed method was applied to DAY general hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se = 99.98% and P+ = 99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 155,000 samples/s can be mentioned as important merits and capabilities of the proposed algorithm.
{"title":"Optimal delineation of ambulatory holter ECG events via false-alarm bounded segmentation of a wavelet-based principal components analyzed decision statistic.","authors":"M R Homaeinezhad, A Ghaffari, H Najjaran Toosi, M Tahmasebi, M M Daevaeiha","doi":"10.1007/s10558-010-9103-2","DOIUrl":"https://doi.org/10.1007/s10558-010-9103-2","url":null,"abstract":"<p><p>The aim of this study is to develop and describe a new ambulatory holter electrocardiogram (ECG) events detection-delineation algorithm with the major focus on the bounded false-alarm probability (FAP) segmentation of an information-optimized decision statistic. After implementation of appropriate preprocessing methods to the discrete wavelet transform (DWT) of the original ECG data, a uniform length sliding window is applied to the obtained signal and in each slid, six feature vectors namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated to construct a newly proposed principal components analyzed geometric index (PCAGI) by application of a linear orthonormal projection. In the next step, the α-level Neyman-Pearson classifier (which is a FAP controlled tester) is implemented to detect and delineate QRS complexes. The presented method was applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7, 3.8 and 6.1 m for P-wave, QRS complex and T-wave, respectively. Also, the proposed method was applied to DAY general hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se = 99.98% and P+ = 99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 155,000 samples/s can be mentioned as important merits and capabilities of the proposed algorithm.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"136-56"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9103-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29288645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9101-4
Jason P Haley, Hadi Mohammadi, Derek R Boughner
Our objective was to design, develop, characterize and validate a prototype device for testing the response of aortic valve tissue to impact forces. With each cardiac cycle, the aortic valve, on closure, is subjected to a substantial impact force and the ability of valvular interstitial cells to withstand such forces without apoptosis has not been examined. Our aim was to correlate impact force with apoptosis, identifying the latter using a terminal transferase dUTP nick end-labelling (Tunel) assay. With our drop tower design, we created reproducible impact forces on heart valve tissue resulting in cellular trauma. The reliability of the impact tester design were verified and results showed that normal tissue can withstand impact forces more than 30× greater than the physiological forces to which the tissue is normally exposed. This provides a wide safety margin and indicates that bioengineered aortic valve tissue should have similar properties if it is to withstand physiologic forces long term.
{"title":"The effects of hammer pressure on cellular response in a porcine heart valve tissue.","authors":"Jason P Haley, Hadi Mohammadi, Derek R Boughner","doi":"10.1007/s10558-010-9101-4","DOIUrl":"https://doi.org/10.1007/s10558-010-9101-4","url":null,"abstract":"<p><p>Our objective was to design, develop, characterize and validate a prototype device for testing the response of aortic valve tissue to impact forces. With each cardiac cycle, the aortic valve, on closure, is subjected to a substantial impact force and the ability of valvular interstitial cells to withstand such forces without apoptosis has not been examined. Our aim was to correlate impact force with apoptosis, identifying the latter using a terminal transferase dUTP nick end-labelling (Tunel) assay. With our drop tower design, we created reproducible impact forces on heart valve tissue resulting in cellular trauma. The reliability of the impact tester design were verified and results showed that normal tissue can withstand impact forces more than 30× greater than the physiological forces to which the tissue is normally exposed. This provides a wide safety margin and indicates that bioengineered aortic valve tissue should have similar properties if it is to withstand physiologic forces long term.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"157-62"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9101-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29204909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9100-5
M W Ashraf, S Tayyaba, A Nisar, N Afzulpurkar, D W Bodhale, T Lomas, A Poyai, A Tuantranont
In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.
在本文中,我们设计,制造和耦合多场分析空心面外硅微针与压电驱动的微流体装置用于经皮给药(TDD)系统治疗心血管或血液动力学疾病,如高血压。首先介绍了采用深度反应离子蚀刻(deep reactive ion etching, DRIE)技术的硅微针和储层掩膜布局设计和制作工艺。随后,采用电感耦合等离子体(ICP)刻蚀技术,采用各向同性和各向异性相结合的刻蚀工艺,实际制备了硅空心微针。然后对基于MEMS的集成硅微针压电驱动器件进行了多场耦合分析。对集成了压电微泵的空心硅微针阵列的耦合场分析,在微流控装置三维模型的序贯结构-流体分析中涉及结构和流场的耦合。在耦合场分析中,采用多码耦合方法研究了电压和频率对硅膜在微针中的偏转和流速的影响。本研究结果为硅空心微针经皮给药微流控装置的优化设计提供了有价值的基准和预测数据。
{"title":"Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.","authors":"M W Ashraf, S Tayyaba, A Nisar, N Afzulpurkar, D W Bodhale, T Lomas, A Poyai, A Tuantranont","doi":"10.1007/s10558-010-9100-5","DOIUrl":"https://doi.org/10.1007/s10558-010-9100-5","url":null,"abstract":"<p><p>In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"91-108"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9100-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29204910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9099-7
Ahmed S Abutaleb, J Melbin
Evaluation of the time-varying parameters (Compliance, Resistance, and Inertance) that describe the right and left ventricles has been of interest for some years. Analyses usually involve a particular assertion regarding energy contributions or of the nature of the parameters themselves. It is of interest to engage the issue with a more general approach by restricting prior assumptions only to that raw data measurement may be noisy and that the parameters are non negative. Here a polynomial in time model is utilized to develop each parameter. Coefficients of the polynomials are estimated from the observed data with use of the maximum likelihood method and stochastic calculus. The pump equation was finally evaluated in full from un-processed pressure and flow data and the method is provided herein.
{"title":"The estimation of the cardiac time-varying parameters during the ejection phase of the cardiac cycle using the Ito calculus.","authors":"Ahmed S Abutaleb, J Melbin","doi":"10.1007/s10558-010-9099-7","DOIUrl":"https://doi.org/10.1007/s10558-010-9099-7","url":null,"abstract":"<p><p>Evaluation of the time-varying parameters (Compliance, Resistance, and Inertance) that describe the right and left ventricles has been of interest for some years. Analyses usually involve a particular assertion regarding energy contributions or of the nature of the parameters themselves. It is of interest to engage the issue with a more general approach by restricting prior assumptions only to that raw data measurement may be noisy and that the parameters are non negative. Here a polynomial in time model is utilized to develop each parameter. Coefficients of the polynomials are estimated from the observed data with use of the maximum likelihood method and stochastic calculus. The pump equation was finally evaluated in full from un-processed pressure and flow data and the method is provided herein.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"118-27"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9099-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29187980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9097-9
Clifton R Johnston, Kogan Lee, Jacqueline Flewitt, Randy Moore, Gary M Dobson, Gail M Thornton
Endovascular stents are commonly used to manage arterial diseases such as Aortic Abdominal Aneurysm (AAA), aortic dissection and coarctation. The radial force the stent applies to the vessel must be large enough to resist stent migration, but not so large that the mechanical stimulus initiates adverse vessel remodeling. We employed two approaches to characterize the radial force of Gianturco stents: first, by applying an external pressure to the stent and, second, by measuring the force exerted by the stent when deployed. From the second approach, we determined the force exerted at various area reductions that correspond to clinically relevant diameter oversizings. In this study, stent stiffness was determined from the force-area reduction curves. Comparing similar stents of various diameters revealed that smaller diameter stent had greater radial force and stiffness than larger diameter stents. Comparing similar stents of various lengths revealed that stents with longer lengths (and greater number of wires) has greater force and stiffness. Overlapping two stents increased the force and stiffness to values greater than the sum of those parameters for the individual stents. These data may have important clinical implications for understanding the effect of oversized and overlapped stents on vessel mechanics.
{"title":"The mechanical properties of endovascular stents: an in vitro assessment.","authors":"Clifton R Johnston, Kogan Lee, Jacqueline Flewitt, Randy Moore, Gary M Dobson, Gail M Thornton","doi":"10.1007/s10558-010-9097-9","DOIUrl":"https://doi.org/10.1007/s10558-010-9097-9","url":null,"abstract":"<p><p>Endovascular stents are commonly used to manage arterial diseases such as Aortic Abdominal Aneurysm (AAA), aortic dissection and coarctation. The radial force the stent applies to the vessel must be large enough to resist stent migration, but not so large that the mechanical stimulus initiates adverse vessel remodeling. We employed two approaches to characterize the radial force of Gianturco stents: first, by applying an external pressure to the stent and, second, by measuring the force exerted by the stent when deployed. From the second approach, we determined the force exerted at various area reductions that correspond to clinically relevant diameter oversizings. In this study, stent stiffness was determined from the force-area reduction curves. Comparing similar stents of various diameters revealed that smaller diameter stent had greater radial force and stiffness than larger diameter stents. Comparing similar stents of various lengths revealed that stents with longer lengths (and greater number of wires) has greater force and stiffness. Overlapping two stents increased the force and stiffness to values greater than the sum of those parameters for the individual stents. These data may have important clinical implications for understanding the effect of oversized and overlapped stents on vessel mechanics.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"128-35"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9097-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29194510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-09-01DOI: 10.1007/s10558-010-9102-3
Sarada Prasad Dakua, J S Sahambi
Quantitative evaluation of cardiac function from cardiac magnetic resonance (CMR) images requires the identification of the myocardial walls. This generally requires the clinician to view the image and interactively trace the contours. Especially, detection of myocardial walls of left ventricle is a difficult task in CMR images that are obtained from subjects having serious diseases. An approach to automated outlining the left ventricular contour is proposed. In order to segment the left ventricle, in this paper, a combination of two approaches is suggested. Difference of Gaussian weighting function (DoG) is newly introduced in random walk approach for blood pool (inner contour) extraction. The myocardial wall (outer contour) is segmented out by a modified active contour method that takes blood pool boundary as the initial contour. Promising experimental results in CMR images demonstrate the potentials of our approach.
{"title":"A strategic approach for cardiac MR left ventricle segmentation.","authors":"Sarada Prasad Dakua, J S Sahambi","doi":"10.1007/s10558-010-9102-3","DOIUrl":"https://doi.org/10.1007/s10558-010-9102-3","url":null,"abstract":"<p><p>Quantitative evaluation of cardiac function from cardiac magnetic resonance (CMR) images requires the identification of the myocardial walls. This generally requires the clinician to view the image and interactively trace the contours. Especially, detection of myocardial walls of left ventricle is a difficult task in CMR images that are obtained from subjects having serious diseases. An approach to automated outlining the left ventricular contour is proposed. In order to segment the left ventricle, in this paper, a combination of two approaches is suggested. Difference of Gaussian weighting function (DoG) is newly introduced in random walk approach for blood pool (inner contour) extraction. The myocardial wall (outer contour) is segmented out by a modified active contour method that takes blood pool boundary as the initial contour. Promising experimental results in CMR images demonstrate the potentials of our approach.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"163-8"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9102-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29281948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1007/s10558-010-9095-y
Vidyasagar Casikar, G S Ramaswamy, Vyshnavi Vidyasagar
Hemodynamic play a very significant role in the pathophysiology of intracranial arteriovenous malformation. The surgical decisions are based on the understanding of the complexities of the flow. Quantification of the abnormal flow is difficult. The mathematical models provide limited information due to the simplicity of the design of these models. Flow of fluid in a tube is very sensitive to small changes in the diameter. We studied the flow characteristics of a fistula by introducing accurately machined acrylic fistulae between the femoral arteries and veins of dogs. The influences of systemic arterial pressure, diameter of the arterial feeders, volume of blood flow, velocity of flow and the diameter of the shunt on the flow of blood across the shunt were studied. Our experiments suggest that the flow characteristics of an arteriovenous fistulae are complex and are influenced by small changes in the diameters of the fistula and the feeding artery. Our model demonstrates the occurrence of the anomalous flow reduction in the fistula and steal phenomenon and is therefore a more realistic representation of the clinical situation. The design of a mathematical model should include the diameter of the fistula if it is intended to replicate the hemodynamic characteristics of an arteriovenous malformation more faithfully.
{"title":"Observations on the flow characteristics of blood flow in arteriovenous fistulae (experimental).","authors":"Vidyasagar Casikar, G S Ramaswamy, Vyshnavi Vidyasagar","doi":"10.1007/s10558-010-9095-y","DOIUrl":"https://doi.org/10.1007/s10558-010-9095-y","url":null,"abstract":"<p><p>Hemodynamic play a very significant role in the pathophysiology of intracranial arteriovenous malformation. The surgical decisions are based on the understanding of the complexities of the flow. Quantification of the abnormal flow is difficult. The mathematical models provide limited information due to the simplicity of the design of these models. Flow of fluid in a tube is very sensitive to small changes in the diameter. We studied the flow characteristics of a fistula by introducing accurately machined acrylic fistulae between the femoral arteries and veins of dogs. The influences of systemic arterial pressure, diameter of the arterial feeders, volume of blood flow, velocity of flow and the diameter of the shunt on the flow of blood across the shunt were studied. Our experiments suggest that the flow characteristics of an arteriovenous fistulae are complex and are influenced by small changes in the diameters of the fistula and the feeding artery. Our model demonstrates the occurrence of the anomalous flow reduction in the fistula and steal phenomenon and is therefore a more realistic representation of the clinical situation. The design of a mathematical model should include the diameter of the fistula if it is intended to replicate the hemodynamic characteristics of an arteriovenous malformation more faithfully.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 2","pages":"66-77"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9095-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28753720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}