Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild
Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.
{"title":"Interpretability of bi-level variable selection methods","authors":"Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild","doi":"10.1002/bimj.202300063","DOIUrl":"https://doi.org/10.1002/bimj.202300063","url":null,"abstract":"<p>Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moses Mwangi, Geert Molenberghs, Edmund Njeru Njagi, Samuel Mwalili, Roel Braekers, Alvaro Jose Florez, Susan Gachau, Zipporah N. Bukania, Geert Verbeke
<p>Many statistical models have been proposed in the literature for the analysis of longitudinal data. One may propose to model two or more correlated longitudinal processes simultaneously, with a goal of understanding their association over time. Joint modeling is then required to carefully study the association structure among the outcomes as well as drawing joint inferences about the different outcomes. In this study, we sought to model the associations among six nutrition outcomes while circumventing the computational challenge posed by their clustered and high-dimensional nature. We analyzed data from a 2 <math>